
Autoencoder-based Deep Reinforcement Learning

for ground-level walking of Human

Musculoskeletal models

Bachelor’s Project Thesis

Massimiliano Falzari, s3459101, m.falzari@student.rug.nl,

Supervisors: Prof. Dr. R. (Raffaella) Carloni

Abstract: This paper proposes using autoencoder-based deep reinforcement learning (AE-DRL)
architectures for ground-level walking of human musculoskeletal models. It compares under-
complete autoencoder (AE) and variational autoencoder (VAE) in the context of physics-based
simulations. The used deep reinforcement learning (DRL) is Proximal Policy optimization with
Imitation Learning (PPO+IL). The architectures are trained with a two-phase approach. First,
the autoencoder-based latent space is learned using gathered simulated data. Then, the DRL
agent with the pre-trained encoder is trained to learn a walking policy. The results show that AE-
DRL methods are more efficient in learning with the same observation space than the standard
DRL. Compared to the baseline (i.e. PPO+IL), AE-PPO+IL had a 131% longer mean duration
of an episode and a 23% higher mean cumulative reward. VAE-PPO+IL, on the other hand, had
a 102% longer mean duration of an episode and a 9% higher mean cumulative reward. Generally,
AE showed better results than VAE with respect to reconstruction error (measured by the mean
square error(MSE)) and DRL mean cumulative reward. VAE, in contrast, performed better in
terms of root MSE from the imitation data.

1 Introduction

In recent years Deep Reinforcement Learning
(DRL) has provided a reliable and effective ap-
proach for learning complex policies in continu-
ous state and action space. Particularly, trust re-
gion policy gradient methods (Peters & Schaal
(2008) Schulman et al. (2015) Schulman et al.
(2017)) showed promising results in a large vari-
ety of robotics tasks (Melo et al. (2021) Melo &
Máximo (2019) Teixeira et al. (2020)). Neverthe-
less, these methods, like many others (e.g. pol-
icy iteration methods), struggle to learn efficiently
in high-dimensional state-space. This phenomenon
happens for a variety of reasons. One of which is
that, in order to generalize across states effectively,
the agent needs to learn an in-between representa-
tion (e.g. through feature extraction) (Higgins et
al. (2017)). This process can be quite data and
time intensive, resulting in low sample efficiency
and huge training time. It is especially problem-
atic when dealing with raw pixels or multiple input

sensors.

A common approach to improve sample efficiency
is to use model-based DRL methods. These meth-
ods learn a model of the environment (i.e. the en-
vironment’s dynamics) while acting, which can be
used to sample simulated data (Luo et al. (2022)).
However, they are significantly more computational
intensive then model-free methods. Their perfor-
mance is highly dependent on the goodness of the
learned environment model. Moreover, they still
struggle in high-dimensional state-space. For these
reasons, this paper focus on autoencoder-based
DRL. The idea is to use an autoencoder (AE) to
learn a low-dimensional representation of the envi-
ronment, which the DRL agent will then use (Ab-
basi et al. (2021) Higgins et al. (2017) Lončarević
et al. (2021) Q. Wang (2022) Prakash et al. (2019)
Andersen et al. (2018) Igl et al. (2018)).

Furthermore, this study test the effectiveness of
the aforementioned technique on an open-source
physics-based simulation (OpenSim) of a healthy
musculoskeletal model, in which the goal is to per-

1

Figure 1.1: The proposed architecture. The par-
ticularity, as opposed to a standard DRL ar-
chitecture, are two. First, the reward system
has not only the usual goal reward but also the
imitation reward. Second, the DRL agent does
not get the observation directly. Instead, a pre-
trained encoder compresses them before giving
them to the agent.

form groud-level walking. The model consists of 22
muscles that control 14 degrees of freedom. The
DRL algorithm of choice is PPO with Imitation
Learning (PPO+IL). This algorithm showed en-
couraging results with a different model (De Vree &
Carloni (2021) Surana (2021) Adriaenssens (2021)).
The aim of the study is, therefore, to compare
PPO+IL to the proposed autoencoder-based archi-
tecture (AE-PPO+IL). Figure 1.1 shows the pro-
posed architecture. The main novelty with respect
to standard PPO+IL is the pre-trained encoder.
It will compress the high-dimensional observation
into a low-dimensional representation.
To summarise, the main objectives of this paper

are:

• Show the effectiveness of autoencoder-based
architecture on non-pixel-based state-space.

• Compare the performances of AE-PPO+IL
and VAE-PPO+IL to PPO+IL

The rest of the paper is organized as follows. Sec-
tion 2 presents the necessary background on PPO
and AE architectures and states the motivations

for using such architectures. Section 3 dives into
the methodology used in the study. It exposes all
the technical details and implementation decisions
with their rationale. Section 4 describes the results
of the study. Lastly, Section 5 shows the limitation
and future prospectives of this work.

2 Theoretical Background

This section dive into the mathematical details of
the PPO algorithm, the autoencoder architectures
used, and the motivation for using such architec-
tures as opposed to classical statistical approaches
(e.g. Principal Component Analysis)

2.1 Proximal Policy Optimization

The PPO algorithm was first introduced by Schul-
man et al. (2017). The primary motivation for
introducing such an algorithm was to improve
the Trust Region Policy Optimization (TRPO)
method. TRPO was too complicated and incompat-
ible with standard architectural optimization (e.g.
parameter sharing between policy and value func-
tion).

Generally, trust region/natural policy gradient
methods take their names because they constrain
the policy update to be somewhat near the old pol-
icy (hence the name trust region). Doing so removes
potentially destructive updates, making the learn-
ing process safer and more stable. In TRPO, the up-
date is constrained based on the Kullback–Leibler
(KL) divergence between the new and old pol-
icy. However, this makes the learning process a
constrain-satisfaction problem which is notoriously
computational expensive.

The method used to constrain the policy update
is the main difference between TRPO and PPO.
The clipped surrogate objective is, indeed, the core
contribution made by Schulman et al. (2017). This
new objective partially removes the need to con-
strain the update using the KL-divergence. Result-
ing in a more efficient and simpler algorithm.

LCLIP (θ) = E
[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
rt(θ) is the ratio between the old and new policy
at time t. Ât is the advantage estimation (i.e. the
difference between the expected and real reward at

2

Figure 2.1: Autoencoder architecture. It is com-
posed of an encoder which, given an input x, ex-
tracts its information into code h and a decoder
which, given a code h, reconstructs the input x̂

time t). Ât is normally computed using the Gener-
alized Advantage Estimation algorithm (GAE).
The PPO algorithm gained much popularity

thanks to its simplicity and effectiveness. Never-
theless, the number of interactions it needs to have
with the environment can be significantly high. In
particular, complex tasks take millions if not bil-
lions of iterations to achieve good results. Melo et
al. (2021) ran the algorithm for 200 million steps,
achieving state-of-the-art results after 75 million
steps. As stated by the authors, this result is al-
ready an improvement compared to Abreu et al.
(2019). However, it is not always possible to have so
many interactions with the environment for differ-
ent reasons. It can be too computational intensive
in highly detailed physics-based simulation. More-
over, gathering so many experiences outside of sim-
ulations (i.e. in the real world) is, at best, imprac-
tical and potentially risky for the agent/robot.

2.2 Autoencoder

An autoencoder is a simple network which is
trained to obtain as output the input (Goodfellow
et al. (2016)). An autoencoder can be seen as two
separate entities: an encoder and a decoder (Fig-
ure 2.1). Therefore, it must have a hidden layer
which represents what is known as code or latent
representation. The encoder takes the input x and
returns the code (i.e. encode(x) = h). The decoder,
on the other hand, takes the code and returns the
reconstructed input (i.e. decode(h) = x̂).

At first glance, this network does not seem to
be useful if decode(encode(x)) = x (which is the
objective of the network). However, most autoen-
coder architectures are designed so that this objec-
tive cannot be reached. These restrictions force the
network to learn valuable properties of the data.

Properties that are represented by the code
One possible restriction is to force the code

to be significantly smaller than the input. There-
fore making the perfect reconstruction of the out-
put almost impossible. In this way, the network
is forced to learn the essential features of the
data. This type of autoencoder is known as under-
complete autoencoder. For convenience, we will al-
ways refer to it as autoencoder. The loss func-
tion L(x, decode(encode(x))) for an autoencoder is
usually a distance or divergence metric (e.g. mean
squared error (MSE))

A notable property of such a network is that
when the loss is the MSE and the decoder is lin-
ear, the learned code has the same subspace as
principal component analysis (PCA). As stated by
Goodfellow et al. (2016), a nonlinear autoencoder
is a better nonlinear generalization of PCA. Many
empirical studies that compared PCA to AE ,in a
variety of different field,have also proven this theo-
retical finding (Y. Wang et al. (2016),Lončarević
et al. (2021),Almotiri et al. (2017),Siwek & Os-
owski (2017)). Specifically, Lončarević et al. (2021)
showed that AE-based latent representation out-
performs PCA-based latent representation when
used by an RL agent. AE showed a smaller recon-
struction error with respect to PCA. The RL agent
also converged faster when an AE-based represen-
tation was used instead of a PCA-based one. This
result is linked to the fact that AEs cannot only per-
form dimensionality reduction but also, as stated
by Y. Wang et al. (2016), find repetitive struc-
ture. This property is crucial in robotics and, more
generally, when aggregating multiple input sensors,
which may or may not encode similar information.

2.3 Variational Autoencoder

A Variational Autoencoder(VAE)(Kingma &
Welling (2013)) has an almost identical architec-
ture to an autoencoder(Figure 2.2). However, its
goal and learning process is significantly different.
As opposed to an AE (discriminative model), a
VAE is a generative model. It, therefore, aims
to learn the joint distribution over the latent
variables. There are many reasons why learning
a generative model can be more useful and gen-
eralizable than learning a discriminative model
(Kingma et al. (2019)). A generative model spon-
taneously learns causal relationships and is robust

3

Figure 2.2: Variational Autoencoder architec-
ture. The encoder maps an input into a mean
and variance, which defines an isotropic multi-
variate Gaussian distribution. This distribution
represents the code/latent space. The decoder
samples from it and reconstructs the input.

against nuisance variables. These properties make
generative models more suitable for learning good
representations.
The VAE architecture is composed of a proba-

bilistic encoder and decoder. This means that the
encoder, instead of mapping the input into a single
vector (like an AE), it maps the input into a distri-
bution over the latent variables. On the other hand,
the decoder is the generative model which samples
from the latent space and produces an output (as
similar as possible to the input).
Formally, given a dataset x and a set of ran-

dom variables z, that represent the code or la-
tent space, we want to know the posterior prob-
ability distribution of the latent variables given the
dataset. In other words, we want to find p(z|x).
We must assume two points to rephrase this prob-
lem within a Bayesian framework. First, the code is
sampled from some prior distribution p(z) (usually,
in standard VAE, the prior is an isotropic multivari-
ate Gaussian distribution). Second, the data x is
sampled from some conditional distribution p(x|z).
Note that these two assumptions are quite soft and
natural in the context of generative models. We can
therefore rewrite p(z|x) as:

p(z|x) = p(x|z)p(z)
p(x)

However, calculating the evidence integral
p(x) =

∫
p(x, z)dz is often intractable or too ex-

pensive to compute. Therefore, Variational Infer-
ence (VI) can be used to approximate the poste-
rior (for an extensive explanation of VI, see Blei et
al. (2017)). The core idea of VI is to reframe the
problem into an optimization problem. Using the
KL-divergence to estimate the goodness of the ap-
proximation. By doing so, it derives the Evidence

Lower Bound (ELBO). Maximizing the ELBO re-
sults in a better approximation. Therefore it can be
used as a loss function with an inverted sign. The
ELBO has different forms, but the one used in the
VAE is:

ELBO(qx) = Ez qx [log(p(x|z))]−KL(qx(z)||p(z))

p(x|z) is the probabilistic decoder, and qx is the
approximated posterior distribution. qx is given by
the following formula, where the probabilistic en-
coder approximates g and h:

qx(z) = N (g(x), h(x))

Finally, the VAE architecture outperformed PCA
and other standard techniques in different dimen-
sionality reduction tasks (Portillo et al. (2020),Lin
et al. (2020)). It also had some promising results
when used in combination with RL. Prakash et al.
(2019) showed impressive results with respect to
their baseline (which was without the VAE). It is
important to notice that the observation space of
the agent was an image. Which partially explains
the drastic improvement from the baseline. How-
ever, other studies like Q. Wang (2022) showed that
improvement upon other methods can be achieved
even if the observation space is not pixel-based.

3 Methods

This section presents all the technical details
needed to replicate the study. From the simulation
software to the implementation details of the learn-
ing process. It concludes by explaining the hyper-
parameters for the different learning techniques.

3.1 Simulation

The simulation program of choice for this study is
Opensim version 4.3-2021-04-14-dbde45530. Open-
sim is open-source physics-based simulation soft-
ware that allows to create and analyze the dynam-
ics of complex musculoskeletal model (Delp et al.
(2007)). A variety of reasons led to choosing this
system. First of all, multiple competitions such as
”NeurIPS 2019: Learn to Move - Walk Around”
and ”NIPS 2017: Learning to Run” decided to use
Opensim as their simulation software. It appears

4

Figure 3.1: Overview of the Opensim model used
in the study. The red colour identifies the 22
muscles.

to be the primary simulation in most human lo-
comotion studies. Showing its reliability and accu-
racy. Finally, De Vree & Carloni (2021) used this
software. Their work highly inspired this study. In
their paper, they proposed two models, a healthy
one and a transfemoral amputee one. They used
Opensim to simulate these models’ dynamics and
a PPO agent to learn ground-walking in both situ-
ations.

One last feature of this software that has proven
to be quite valuable is the ability to run motion
files. Motion files are usually generated from data
gathered from actual human motion. This feature
was crucial in analyzing, processing and checking
the imitation data used in the reward system for the
DRL agent (more on the imitation data in section
3.3)

Figure 3.2: Overview of the different parts
(taken into consideration)that compose the
model.

3.2 Model

The model used in this study is a simplified ver-
sion of a human musculoskeletal model (see figure
3.1). It was developed by Ajay Seth and adjusted
by Carmichael Ong (Seth et al. (2018)). The model
has 11 muscles per leg. For a total of 22 muscles.
Moreover, it has 14 degrees of freedom: four at the
knee and ankle joints (2 per leg), six at the pelvis
(tilt, list, rotation,x,y,z) and four at the hip joints
(flexion and adduction for each leg). A Hill-type
muscle model simulates the muscles. This type of
muscle model is not the most accurate in mimick-
ing human muscles. However, its state equation is
notorious for being fast to compute. This property
makes it a perfect alternative to more realistic but
complex systems. Moreover, the model gives infor-
mation about different body parts, joints and the
centre of mass (x,y,z) (Figure 3.2). It also takes
into account the ground forces on the feet. Specif-
ically, there are three components (x,y,z) for both
the force and the torque applied to each foot. Re-
sulting in a total of 12 values.

Finally, table 3.1 shows the exact information
used by the AE architecture. Even though Opensim
gives access to the accelerations, this study does
not consider them. The two main reasons for this
decision are: First, the accelerations, particularly
during training, had many outliers, making learn-
ing harder. Second, the reward system (more about
it in section 3.3) does not explicitly model acceler-
ation.

5

3.3 Reward System

The most vital component in a reinforcement learn-
ing framework is the reward system. This system is
responsible for giving some kind of feedback to the
agent, which can be positive or negative. The agent,
on the other hand, has the objective to maximize
the reward intaken.

Designing a good and correct reward is not, by
any means, trivial. There are several risks when
constructing it. A misspecified rewards system can
lead to adverse side effects on the final agent be-
haviour. As explained by Hadfield-Menell et al.
(2017). They can also lead to what is known as re-
ward hacking. The work done by Amodei & Clark
(2016) is an excellent example. The wanted goal
was to win a racing game. However, due to poor
reward specification, the agent ends up looping. It
collects points in a circle without actually winning
the race. Even if this was not the intended be-
haviour, it was the optimal/best behaviour found
to maximize the reward intaken.

In this study, the reward system is composed of
two main components. The goal reward should en-
courage the agent to move forward without falling.
And the imitation reward, which should guide the
forward movement to reassemble as close as pos-
sible a human-like movement. The designing deci-
sions on the reward are highly based and influenced
by De Vree & Carloni (2021) and Peng et al. (2018)

The goal reward is the MSE between the agent
and the desired velocity. In particular, the velocities
on the x and z axes are used. It is finally scaled

Table 3.1: Number of selected dimensions for
each component

Components Number
Body parts

39 + 39 + 39 + 39
(pos,vel,pos rot,vel rot)
Muscles

22 + 22 + 22 + 22
(force,length,vel,activation)
Joints

17 + 17
(pos,vel)
Centre of Mass

3 + 3
(pos,vel)
Ground forces

6 + 6
(force,torque)
Total 296

using an exponential function.

rewardgoal = e−8∗(diffvelx+diffvelz)

Surana (2021) inspired the values of the scaling fac-
tors, which were found experimentally.

The imitation reward, on the other hand, is
slightly more complex. It is composed of two parts.
The difference in position and velocity between the
agent and the imitation data(more on imitation
data in section 3.4). MSE is used to calculate each
difference. The joints and body parts considered
are: knees, hip (adduction and flexion), ankles and
pelvis (rotation, tilt, list). The total imitation re-
ward is calculated as follows:

rewardimi = 0.75 ∗ e−2∗diffpos +0.25 ∗ e−0.1∗diffvel

Note that the difference in position concerning the
imitation data is more important than the differ-
ence in velocity. Two main reasons motivated this
imbalance. First, the position is more determinant
than velocity when it comes to imitation. Second,
the velocity is already partially modelled by the
goal reward.

Finally, the two rewards are weighted and
summed together to form the final reward that the
agent will use.

rewardfinal = 0.6 ∗ rewardimi + 0.4 ∗ rewardgoal

The weights used are taken from De Vree & Carloni
(2021) and were found to be the best experimen-
tally.

3.4 Imitation Data

Human data were used in this paper to calculate
part of the reward. Therefore, using similar imi-
tation data to replicate the study is vital. In this
sub-section, the pre-processing made on the data
will be presented.

First of all, the data was collected from a pub-
lic database named Camargo Dataset. This dataset
includes a variety of human data. The subject
used in this study was AB06. The starting position
was shifted to 12.8 seconds when the actual trial
started. The data were trimmed when the subject
started to walk in a circle (which was the trial ob-
jective). It was trimmed precisely after 3.9 seconds
from the start of the trial. Then it was translated

6

and transformed to comply with the OpenSim en-
vironment. Specifically, it was translated to start
from the origin and rotated by -90 degrees on the
Y axis. Finally, the Opensim software scaled the
data to fit our model and created the inverse kine-
matics, which will be used in the imitation reward
(for more information about process see Ajay et al.
(2022)).

3.5 Training Process

There are two main approaches in the literature
used to train this autoencoder plus reinforcement
learning architecture.
The first one can be seen as an online approach.

It usually consists in training the AE and RL at
the same time. However, this approach can result in
training instability and bad results if done naively.
This can happens because there is a feedback loop
between the two learning processes. The autoen-
coder shapes the observation, which influences the
RL. Meanwhile, the RL takes action based on the
observation, influencing the following observation.
Hence it biases the training of the AE. Therefore,
most studies that take this approach have to design
custom architecture. Which aims to control better
the interaction between the two parts.
For instance, the work done by Yarats et al.

(2021) is an excellent example. Their aim is sim-
ilar to the one of this study: improving sample effi-
ciency. To control the issues mentioned above, they
create a custom architecture. This architecture uses
three different gradients to update different system
parts. For instance, the encoder is updated with
two gradients. One coming from the reconstruction
error (as in standard AE) and one coming from the
soft Q-Learning. There is another gradient which is
responsible for updating the policy.
However, since these online methods are rela-

tively new, this study decided to take a ”safer” and
more conventional approach. This second method
can be seen as an offline one. It consists of two
phases (using the terminology from Higgins et al.
(2017)): learn to see and learn to act. During the
first phase, observations are gathered from the en-
vironment and used to train an AE in a classical
unsupervised fashion. In the second phase, the pre-
trained encoder compresses the observation, which
the learning agent uses. This approach completely
avoids the problems that can arise using the first

method. However, it has a few downsides.
Firstly, it needs to acquire observations from

the environment. This process can be problematic,
mainly if gathering them is not a trivial task (i.e. in
the real world). On the other side, this can also be
useful if data on the environment is already avail-
able. Particularly true for pixel-based input. Sec-
ondly, the gathered observations should cover as
much as possible the entire observation landscape.
This property is necessary to learn a good repre-
sentation with the AE. VAE architectures, thanks
to their probabilistic nature, can partially alleviate
this problem.

This study uses simulation software as the en-
vironment. Therefore gathering observation is not
an issue. However, if this is a concern, some statis-
tical approaches (e.g. Gaussian Process Regression
(GPR)) can be used to augment the datasets (see
Abbasi et al. (2021) and Lončarević et al. (2021)).

In the literature, fixed policies are generally used
to gather observations during the first phase. How-
ever, in this paper, creating such a fixed policy was
not trivial due to the complexity of the task. Fur-
thermore, using a random policy resulted in poor
coverage of the observation landscape. For this rea-
son, an RL agent was used. Once collected, the
outliers were removed, and the dataset was nor-
malized (using the z-score approach). Finally, the
dataset was reduced to having only uncorrelated
data points. All these pre-processing operations
were done on the base of LeCun et al. (2012) which,
as stated, should speed up and improve the learning
process (e.g. better generalization properties).

During the second phase (i.e. Learn to act), the
PPO agent was trained on the environment using
the pre-trained encoder to create the compressed
representation. It is essential to note that no gra-
dient updates will modify the encoder during this
phase.

3.6 Implementation details

The PPO algorithm was not implemented from
scratch. Stable-baselines3 (SB3) by Raffin et al.
(2021) was used. This library offers a variety of
functionalities which were crucial for the develop-
ment of the study.

Table 3.2 shows the hyperparameters used in the
PPO algorithm. The values were found experimen-
tally, based on previous studies (De Vree & Carloni

7

(2021),Surana (2021)). No hyperparameter search
algorithm was applied.
The PPO algorithm contains two networks. The

value function network and the policy network
(both implemented by a MultiLayer Perceptron
(MLP)). The networks do not share any parame-
ters. They are composed of three hidden layers of
312 neurons. The dimensionality of the selected la-
tent representation defined the width of the input
layer. The output layer of the policy network had 22
neurons, each corresponding to a different muscle
in the model. Lastly, the tanh function was used to
squash the output. (in SB3, the parameter is called
squash output). Squashing the output is a common
practice in DRL. The reason is that the policy net-
work often does not output sensible values for the
action-space boundaries.
On the other hand, the autoencoder networks

were implemented using the library Pytorch devel-
oped by Paszke et al. (2019). The implementation
does follow the standard theory for both the au-
toencoder and the variational autoencoder.
Table 3.3 presents the hyperparameters used for

the two autoencoders. This study also defines a cus-

Table 3.2: Selected Proximal Policy Optimiza-
tion Hyperparameters

Parameter SB3 name Value
Seed seed 42
Parallel environments num envs 20
Steps per worker n steps 1024
Epoch per update n epoch 4
Minibatch size bach size 512
Discount factors gamma 0.999
Bias vs variance (GAE) gae lambda 0.9
Clip range (ϵ) clip range 0.2
Entropy coefficient ent coef 0.01
Learning rate learning rate 0.001

Table 3.3: Selected AE and VAE hyperparame-
ters

Parameter Value
Epochs 750
Hidden layers 6
Latent/Code dimensionality 66
Learning rate 0.001
Optimizer AdamW

tom function to decide the number of neurons per
layer. The function is defined by the following sys-
tem of equations.

n1 = I

nN = Z

ni = ni+1 ∗ λ
. (3.1)

The first two equations constrain the fact that the
dimensionality of the input layer and the output
layer is known (I input neurons and Z output neu-
rons). The last equation force a constant shrinking
of the number of neurons (assuming Z >> I). This
system of equations can be rewritten in a single
formula:

ni = Z ∗
(
I

Z

)N−i
N−1

Where i is the layer index, and N is the number of
layers.

4 Results

This section first analyzes and compares the latent
spaces generated by the autoencoders. The com-
parison is based on the reconstruction error. Then,
it dives into the actual performance of the rein-
forcement learning algorithm. The performance of
the architecture will be compared to the canonical
PPO algorithm.

4.1 Latent space and Reconstruction
Error

The different latent spaces are generated from the
296-dimensional observation space (as shown in Ta-
ble 3.1). Each of them has 66 latent dimensions.
Therefore, it is impossible to visualize them fully
without losing meaningful information. For this
reason, a 2-dimensional VAE and AE were trained.

The figures 4.1 show the two latent space dis-
tributions. The most important difference between
the two is their shape. In the VAE latent space, we
can see that the overall shape is close to an isotropic
multivariate Gaussian distribution. Moreover, the
distribution has an almost identical range for the
two latent dimensions (i.e. θ1V AE and θ2V AE). These
properties are perfectly in-line with the objective of
the learning process. On the other hand, the AE la-
tent space was not forced to comply with any prior

8

Figure 4.1: Variational Autoencoder and Under-
complete Autoencoder Latent spaces. The fig-
ures represent the projection of the testing data
onto the latent space. The intensity of the colour
represents the density. A Kernel Density Esti-
mation (KDE) was used to represent the distri-
bution.

distribution. Therefore, the AE found the (pseudo-
)optimal distribution given its objective (i.e. mini-
mize the reconstruction error). Finally, as opposed
to the VAE latent space, the ranges of the two la-
tent dimensions are significantly different.

That said, by using the reconstruction error, it
is possible to have a rough indication of the ”good-
ness” of the learned representation. The reconstruc-
tion metric of choice was the MSE. The baseline
was a fitted Principal Component Analysis. In table
4.1 we can see the results. In general, the autoen-
coders performed slightly better than a standard
PCA. This result shows again that autoencoders
are generally better than PCA, thanks to their abil-
ity to perform nonlinear operations. The other no-
table outcome was that AE had a lower reconstruc-
tion error than VAE. It is not entirely unexpected.
The VAE implicitly makes a tradeoff between the
similarity of the latent distribution to the prior (i.e.
by having the KL-divergence in the objective) and
the reconstruction error. This can explain why the
AE perform better under this metric.

4.2 Reinforcement Learning perfor-
mance

The reconstruction error does not entirely as-
sess the ”goodness” of the learned representation.
Therefore, we can compare the RL result using
those representations. Figure 4.2 shows the learn-
ing curves of the different architectures. The first
five million steps of the training process are shown
.

Figure 4.2 compares the two proposed architec-
tures and the baseline PPO+IL. It clearly shows
that the autoencoder methods perform significantly
better regarding mean episode duration. Specifi-
cally, AE-PPO+IL has a 131% increase in mean
episode duration than PPO+IL. Meanwhile, VAE-
PPO+IL improve over PPO+IL by a 102%. This

Table 4.1: Reconstruction error based on test-
ing data gathered during the first phase of the
training process (see Section 3.5)

Method Reconstruction Error
VAE 0.0013± 0.0070
AE 0.0004± 0.0042
PCA 0.0023± 0.0065

9

Figure 4.2: The learning curves of the
three DRL architectures (AE-PPO+IL, VAE-
PPO+IL, PPO+IL). The top plot shows the av-
erage episode length (in seconds). The bottom
one presents the average episode rewards.

discrepancy in mean episode duration shows that
the two autoencoder methods learn better to avoid
falling compared to the baseline. Moreover, since
they survive more in the environment, they can
explore the state space more, resulting in better
local optimal. On the other hand, they perform
only marginally better than PPO+IL in terms of
mean cumulative reward. AE-PPO+IL and VAE-
PPO+IL improve over the baseline by 23% and 9%,
respectively. This difference between the improve-
ment in mean episode duration and mean cumu-
lative reward could signal reward misspecification
since surviving longer in the environment should
result in significantly higher rewards. In fact, the
AE-PPO+IL and VAE-PPO+IL learn to balance
the model while trying to be as close as possible to
the imitation data in order to get better rewards.
To avoid such behaviour, a change in the reward
system is needed.

Figures 4.3 and 4.4 compares the different ar-
chitectures with respect to their gait pattern. The
figures show roughly two seconds (200 timesteps =
1.05s), which, as described by Murray et al. (1964)
should correspond to two full gait cycles. The grey
area represents the imitation data with a standard
deviation of 10 degree. The algorithms did not learn
to follow the imitation data for both knee angles
properly. This is in line with the fact that the agent
does not take a step. Moreover, the knee angles are
more challenging to follow than the rest of the im-
itation data because they are a broader range of
motion/value. Generally, besides the knee angles,
the agent is able to stay almost always within 10
degrees from the imitation data. Table 4.2 shows
the total root mean squared error over all the 14
degrees of freedom. VAE-PPO+IL has the lowest
root mean squared error over all the 14 degrees
of freedom. A possible explanation for the better
performance of the VAE compared to the other ar-
chitecture is the ability to learn causal relationships
(as explained in 2.3). This could have helped the RL
agent better understand the environment’s dynam-
ics, making it easier to follow the imitation data
while balancing in place.

The above result also translated into lower mus-
cle forces and activation for the VAE-PPO+IL
compared to the AE-PPO+IL. Table 4.3 and 4.4
summarises the activations and fiber forces of the
muscles around the knee and the ankle joints. VAE-
PPO+IL has in total 6.8% less activation and

10

Figure 4.3: Gait cycles of the hip joint flexion
and adduction. The angles are expressed in de-
grees. The grey area represents the imitation
data with 10 degrees of standard deviation.

Figure 4.4: Gait cycles of the knee and ankle
joints. The angles are expressed in degrees. The
grey area represents the imitation data with 10
degrees of standard deviation.

11

11.1% less fiber force compared to AE-PPO+IL.
This shows that VAE-PPO+IL is more energy-
efficient. Figure 7.1 and 7.2 in the appendix show
in more detail the fiber force of the muscles around
the knee and the ankle joints for 2 gait cycles.
Lastly, the value loss during the training of

the AE-PPO+IL and VAE-PPO+IL was relatively
high. The value loss is the ability to predict each
state’s value (reward). It usually increases with the
increase in reward and stabilizes at convergence.
However, this pattern was not noticed with the
other tested methods. It can signal a high explo-
ration rate. This phenomenon can be associated
with low-dimensional observations facilitating the
agent’s exploration.

5 Conclusion

This paper aims to propose and compare two dif-
ferent autoencoders with DRL architectures. The
DRL of choice was the PPO+IL which, as shown
in previous studies with similar structures, had
promising results. The proposed autoencoders were
an under-complete autoencoder and a variational
autoencoder. They have many differences, as pre-
sented in section 2. However, the core difference
is the constraints they force on their latent space.
The approach used to train the whole architec-
ture was offline. This method is divided into two

Table 4.2: Cumulative RMSE from the imita-
tion data over all the 14 degrees of freedom (see
section 3.2)

Algorithm RMSE
VAE-PPO+IL 148.8280
AE-PPO+IL 159.9797
PPO 171.9396

Table 4.3: Activation for the muscles around the
knee and ankle joints. Each entry is the sum of
the right and left muscles.

Muscle AE-PPO+IL VAE-PPO+IL diff
bifemsh 0.99 0.84 0.14
vasti 0.69 0.45 0.24
soleus 0.34 0.43 -0.08
tib ant 1.21 1.3 -0.09

Total difference 0.20

Table 4.4: Fiber force for the muscles around the
knee and ankle joints. Each entry is the sum of
the right and left muscles.

Muscle AE-PPO+IL VAE-PPO+IL diff
bifemsh 688.68 585.92 102.75
vasti 382.27 219.13 163.13
soleus 147.71 173.05 -25.33
tib ant 665.79 717.08 -51.29

Total difference 189.26

different phases. In the first one, the autoencoder
is trained using pre-gathered data. The DRL is
trained during the second phase, using the pre-
trained encoder to compress the observations. This
study used an RL agent to gather the data. The
collected trajectories were normalized to make the
autoencoders learn more efficiently. Finally, they
were evaluated based on the reconstruction error
and the DRL performance. It was shown that they
improved the DRL’s performance and efficiency.
The AE performed slightly better on reconstruc-
tion error and RL performance (mean cumulative
reward and mean episode duration) than the VAE.
In contrast, VAE had a lower RMSE from the im-
itation data. Nevertheless, both agents learned to
achieve relative high rewards while not performing
the wanted task. This showed that a modification
of the reward system is needed.

5.1 Limitation and Future work

This study has some significant limitations which
can be improved upon.

First of all, the method used to gather data
is questionable. Mainly, if the aim is to general-
ize to the real world, using another RL agent to
gather data is risky and impractical. A possible so-
lution is to use some statistical methods to gen-
erate data starting from a few data points, as sug-
gested by other studies (see Abbasi et al. (2021) and
Lončarević et al. (2021)). In this study, we used im-
itation data to improve the DRL performance, this
data can be used as a starting point for the data
generation.
Another possible approach is to design a fixed pol-
icy to explore the state-space. However, these ap-
proaches could fail to cover enough of the observa-
tion landscape. This fallacy is especially problem-

12

atic if the DRL agent is allowed to explore the state-
space unconstrained (e.g. extremely high muscle ac-
tivation can result in unrealistic position and accel-
eration). Therefore, to solve this problem, the best
solution is to either constrain the action space or
to use different AE architecture which are focused
on learning a disentangled representation (e.g. Hig-
gins et al. (2017)). An example of constraining the
action-space can be seen in Lončarević et al. (2021).
In that study, they used Dynamic movement Prim-
itives (DMP) to reduce the action-space to only
sensible actions.

Another fallacy of this study was the reward sys-
tem. Given the results, the agents clearly learn to
maximize the reward while not performing the ac-
tual task. This is a clear case of reward misspecifi-
cation as explained in section 3.3. A possible solu-
tion is to give a higher weight to the difference in
velocity. Particularly, the weight of -0.1 on the dif-
ference in velocity from the imitation data should
be changed. This should theoretically be an incen-
tive for the agent to move. Another possible option
is to give a higher weight to the goal reward, which
is the part responsible for the x and z velocities.

Finally, the vanilla PPO algorithm can be
changed/improved. New, improved versions of the
algorithm were designed. A perfect example is Hsu
et al. (2020). In their paper, they highlight quite
some fallacies in the PPO algorithm. The most no-
torious is the algorithm’s dependence on the initial
network weights. This relation is highly problem-
atic when trying to replicate a study which did not
specify the seed and approach used to initialize the
networks. Therefore, to improve the study, different
DRL techniques could be tested.

6 Acknowledgements

Massimiliano Falzari (author of the thesis) would
like to thank his supervisor, Raffaella Carloni (Pro-
fessor, University of Groningen), for the feedback
and advice needed to conduct this study. A spe-
cial thanks to Rutger Luinge, Carl Lange, Elena
Poeltuijn and Robin Kock for contributing to the
processing of the imitation data, the development
of the techniques used in this study and lastly, for
creating a motivated and creative working environ-
ment.

References

Abbasi, M., Karami, M., Koushki, A., & Vossoughi,
G. (2021). Autoencoder-based safe reinforcement
learning for power augmentation in a lower-limb
exoskeleton. In 2021 9th rsi international confer-
ence on robotics and mechatronics (icrom) (pp.
138–143).

Abreu, M., Reis, L. P., & Lau, N. (2019). Learning
to run faster in a humanoid robot soccer environ-
ment through reinforcement learning. In Robot
world cup (pp. 3–15).

Adriaenssens, A. (2021). Testing for generality of a
proximal policy optimiser for advanced human lo-
comotion beyond walking (Unpublished doctoral
dissertation).

Ajay, S., Jennifer, H., Sam, H., Matt,
D., Jill, H., Brian, K., . . . Chris, H.
(2022). Simulation with opensim - best
practices. Retrieved 2022-08-30, from
https://simtk-confluence.stanford.edu:8443

/display/OpenSim/Simulation+with+OpenSim+

-+Best+Practices

Almotiri, J., Elleithy, K., & Elleithy, A. (2017).
Comparison of autoencoder and principal com-
ponent analysis followed by neural network for e-
learning using handwritten recognition. In 2017
ieee long island systems, applications and tech-
nology conference (lisat) (pp. 1–5).

Amodei, D., & Clark, J. (2016). Faulty reward
functions in the wild. Retrieved 2022-08-30, from
https://blog.openai.com/faulty-reward-

functions/

Andersen, P.-A., Goodwin, M., & Granmo, O.-
C. (2018). The dreaming variational autoen-
coder for reinforcement learning environments.
In International conference on innovative tech-
niques and applications of artificial intelligence
(pp. 143–155).

Blei, D. M., Kucukelbir, A., & McAuliffe, J. D.
(2017). Variational inference: A review for statis-
ticians. Journal of the American statistical As-
sociation, 112 (518), 859–877.

Delp, S. L., Anderson, F. C., Arnold, A. S., Loan,
P., Habib, A., John, C. T., . . . Thelen, D. G.

13

(2007). Opensim: open-source software to cre-
ate and analyze dynamic simulations of move-
ment. IEEE transactions on biomedical engineer-
ing , 54 (11), 1940–1950.

De Vree, L., & Carloni, R. (2021). Deep reinforce-
ment learning for physics-based musculoskeletal
simulations of healthy subjects and transfemoral
prostheses’ users during normal walking. IEEE
Transactions on Neural Systems and Rehabilita-
tion Engineering , 29 , 607–618.

Goodfellow, I., Bengio, Y., & Courville,
A. (2016). Deep learning. MIT Press.
(http://www.deeplearningbook.org)

Hadfield-Menell, D., Milli, S., Abbeel, P., Russell,
S. J., & Dragan, A. (2017). Inverse reward de-
sign. Advances in neural information processing
systems, 30 .

Higgins, I., Pal, A., Rusu, A., Matthey, L., Burgess,
C., Pritzel, A., . . . Lerchner, A. (2017). Darla:
Improving zero-shot transfer in reinforcement
learning. In International conference on machine
learning (pp. 1480–1490).

Hsu, C. C.-Y., Mendler-Dünner, C., & Hardt,
M. (2020). Revisiting design choices in
proximal policy optimization. arXiv preprint
arXiv:2009.10897 .

Igl, M., Zintgraf, L., Le, T. A., Wood, F., & White-
son, S. (2018). Deep variational reinforcement
learning for pomdps. In International conference
on machine learning (pp. 2117–2126).

Kingma, D. P., & Welling, M. (2013). Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114 .

Kingma, D. P., Welling, M., et al. (2019). An in-
troduction to variational autoencoders. Founda-
tions and Trends® in Machine Learning , 12 (4),
307–392.

LeCun, Y. A., Bottou, L., Orr, G. B., & Müller,
K.-R. (2012). Efficient backprop. In Neural net-
works: Tricks of the trade (pp. 9–48). Springer.

Lin, E., Mukherjee, S., & Kannan, S. (2020). A
deep adversarial variational autoencoder model

for dimensionality reduction in single-cell rna se-
quencing analysis. BMC bioinformatics, 21 (1),
1–11.

Lončarević, Z., Gams, A., Ude, A., et al. (2021).
Robot skill learning in latent space of a deep
autoencoder neural network. Robotics and Au-
tonomous Systems, 135 , 103690.

Luo, F.-M., Xu, T., Lai, H., Chen, X.-H., Zhang,
W., & Yu, Y. (2022). A survey on model-
based reinforcement learning. arXiv preprint
arXiv:2206.09328 .

Melo, L. C., & Máximo, M. R. O. A. (2019). Learn-
ing humanoid robot running skills through prox-
imal policy optimization. In 2019 latin american
robotics symposium (lars), 2019 brazilian sym-
posium on robotics (sbr) and 2019 workshop on
robotics in education (wre) (pp. 37–42).

Melo, L. C., Melo, D. C., & Maximo, M. R. (2021).
Learning humanoid robot running motions with
symmetry incentive through proximal policy op-
timization. Journal of Intelligent & Robotic Sys-
tems, 102 (3), 1–15.

Murray, M. P., Drought, A. B., & Kory, R. C.
(1964). Walking patterns of normal men. JBJS ,
46 (2), 335–360.

Paszke, A., Gross, S., Massa, F., Lerer, A.,
Bradbury, J., Chanan, G., . . . Chintala, S.
(2019). Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, & R. Garnett (Eds.), Advances in neural
information processing systems 32 (pp. 8024–
8035). Curran Associates, Inc. Retrieved from
http://papers.neurips.cc/paper/9015-pyto

rch-an-imperative-style-high-performance-

deep-learning-library.pdf

Peng, X. B., Abbeel, P., Levine, S., & Van de
Panne, M. (2018). Deepmimic: Example-
guided deep reinforcement learning of physics-
based character skills. ACM Transactions On
Graphics (TOG), 37 (4), 1–14.

Peters, J., & Schaal, S. (2008). Natural actor-critic.
Neurocomputing , 71 (7-9), 1180–1190.

14

Portillo, S. K., Parejko, J. K., Vergara, J. R., &
Connolly, A. J. (2020). Dimensionality reduction
of sdss spectra with variational autoencoders.
The Astronomical Journal , 160 (1), 45.

Prakash, B., Horton, M., Waytowich, N. R.,
Hairston, W. D., Oates, T., & Mohsenin, T.
(2019). On the use of deep autoencoders for effi-
cient embedded reinforcement learning. In Pro-
ceedings of the 2019 on great lakes symposium on
vlsi (pp. 507–512).

Raffin, A., Hill, A., Gleave, A., Kanervisto, A.,
Ernestus, M., & Dormann, N. (2021). Stable-
baselines3: Reliable reinforcement learning im-
plementations. Journal of Machine Learn-
ing Research, 22 (268), 1-8. Retrieved from
http://jmlr.org/papers/v22/20-1364.html

Schulman, J., Levine, S., Abbeel, P., Jordan, M.,
& Moritz, P. (2015). Trust region policy op-
timization. In International conference on ma-
chine learning (pp. 1889–1897).

Schulman, J., Wolski, F., Dhariwal, P., Radford,
A., & Klimov, O. (2017). Proximal pol-
icy optimization algorithms. arXiv preprint
arXiv:1707.06347 .

Seth, A., Hicks, J. L., Uchida, T. K., Habib, A.,
Dembia, C. L., Dunne, J. J., . . . others (2018).
Opensim: Simulating musculoskeletal dynamics
and neuromuscular control to study human and
animal movement. PLoS computational biology ,
14 (7), e1006223.

Siwek, K., & Osowski, S. (2017). Autoencoder ver-
sus pca in face recognition. In 2017 18th interna-
tional conference on computational problems of
electrical engineering (cpee) (pp. 1–4).

Surana, S. (2021). Evaluating deep reinforce-
ment learning algorithms for physics-based mus-
culoskeletal transfemoral model with a pros-
thetic leg performing ground-level walking (Un-
published doctoral dissertation).

Teixeira, H., Silva, T., Abreu, M., & Reis, L. P.
(2020). Humanoid robot kick in motion ability
for playing robotic soccer. In 2020 ieee interna-
tional conference on autonomous robot systems
and competitions (icarsc) (pp. 34–39).

Wang, Q. (2022). Varl: a variational autoencoder-
based reinforcement learning framework for vehi-
cle routing problems. Applied Intelligence, 52 (8),
8910–8923.

Wang, Y., Yao, H., & Zhao, S. (2016). Auto-
encoder based dimensionality reduction. Neuro-
computing , 184 , 232–242.

Yarats, D., Zhang, A., Kostrikov, I., Amos, B.,
Pineau, J., & Fergus, R. (2021). Improving sam-
ple efficiency in model-free reinforcement learn-
ing from images. In Proceedings of the aaai
conference on artificial intelligence (Vol. 35, pp.
10674–10681).

15

7 Appendix

Figure 7.1: Fiber forces for the short head of the biceps femoris and vasti over 2 gait cycles for
the two autoencoder architectures (left AE-PPO+IL, right VAE-PPO+IL). The blue and green
lines represent the mean fiber force.

16

Figure 7.2: Fiber forces for the soleus and the tibialis anterior over 2 gait cycles for the two
autoencoder architectures. (left AE-PPO+IL, right VAE-PPO+IL). The blue and green lines
represent the mean fiber force.

17

