Neurocomputing 184 (2016) 232-242

journal homepage: www.elsevier.com/locate/neucom

Contents lists available at ScienceDirect

Neurocomputing

NEUROCOMPUTING
LETERS

Auto-encoder based dimensionality reduction

CrossMark

@

Yasi Wang, Hongxun Yao *, Sicheng Zhao

School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China

ARTICLE INFO

Article history:

Received 22 January 2015

Received in revised form

3 August 2015

Accepted 4 August 2015

Available online 27 November 2015

Keywords:

Auto-encoder
Dimensionality reduction
Visualization

Intrinsic dimensionality
Dimensionality-accuracy

ABSTRACT

Auto-encoder—a tricky three-layered neural network, known as auto-association before, constructs the
“building block” of deep learning, which has been demonstrated to achieve good performance in various
domains. In this paper, we try to investigate the dimensionality reduction ability of auto-encoder, and see
if it has some kind of good property that might accumulate when being stacked and thus contribute to
the success of deep learning.

Based on the above idea, this paper starts from auto-encoder and focuses on its ability to reduce the
dimensionality, trying to understand the difference between auto-encoder and state-of-the-art dimen-
sionality reduction methods. Experiments are conducted both on the synthesized data for an intuitive
understanding of the method, mainly on two and three-dimensional spaces for better visualization, and
on some real datasets, including MNIST and Olivetti face datasets. The results show that auto-encoder
can indeed learn something different from other methods. Besides, we preliminarily investigate the
influence of the number of hidden layer nodes on the performance of auto-encoder and its possible
relation with the intrinsic dimensionality of input data.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Artificial neural network is a mathematical and computational
model composed of a large number of neurons that can simulate
the structural and functional characteristics of biological neural
network. It is a self-adaptive system, which changes the internal
structure according to the external input, and is commonly used to
model the complex relationship between input and output. The
development of artificial neural network is a tortuous road. Per-
ceptron is the starting point of modern neural computation, and
the proof of perceptron convergence theorem in 1962 triggered
the first climax of research for neural network represented by
perceptron. In 1965, Minsky and Papert [2,20] pointed out the
defects of perceptron and took a pessimistic view on the research
of neural network, which made neural network study from rise
into stagnation. By the early 1980s, related work by Hopfield et al.
[16] showed the potential of neural network which made neural
network study from stagnation to boom. In the mid-1990s, with
the advent of the support vector machine (SVM) [10], researchers
realized some limitations of artificial neural network and the
research for neural network fell into low tide period again.

* Corresponding author.
E-mail addresses: wangyasi@hit.edu.cn (Y. Wang), h.yao@hit.edu.cn (H. Yao),
zsc@hit.edu.cn (S. Zhao).

http://dx.doi.org/10.1016/j.neucom.2015.08.104
0925-2312/© 2015 Elsevier B.V. All rights reserved.

Auto-encoder, known as auto-association before, is a tricky
three-layered neural network and was studied by a number of
researchers in 1990s. Bourlard and Kamp [7] discussed the rela-
tionship between auto-association by multi-layer perceptrons and
singular value decomposition in 1988. They showed that for auto-
association with linear output units, the optimal weight values
could be derived by purely linear techniques relying on singular
value decomposition and low rank matrix approximation. In 1991,
Kramer [18] introduced how to conduct nonlinear principal com-
ponent analysis using auto-associative neural networks with three
hidden layers. Due to the difficulty in training, deep network with
multi-layer stacked auto-encoders did not exert its superior
strength for a long time. Some researchers committed themselves
to investigating several fundamental issues of neural networks
with one or two hidden layers [8,1,22,23,3,9,17,25,21,27].

Until 2006, Geoffrey Hinton [15] solved this problem in Science
Magazine to a large extent and broke the stalemate that neural
network was in low tide. The method was to do layer-wise pre-
training [14] to multi-layer auto-encoders using RBM [13]. That is
the very hot topic in recent years—deep learning. From then on,
deep learning sweeps across the industry and the academia like a
wave. Recent research results have also demonstrated that deep
learning indeed achieves state-of-the-art performances among
various areas [4-6]. Particularly, deep learning has already been
successfully applied to the industry in speech area. In the field of
image analysis, there are also many good results. By building a

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.08.104
http://dx.doi.org/10.1016/j.neucom.2015.08.104
http://dx.doi.org/10.1016/j.neucom.2015.08.104
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.08.104&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.08.104&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.08.104&domain=pdf
mailto:wangyasi@hit.edu.cn
mailto:h.yao@hit.edu.cn
mailto:zsc@hit.edu.cn
http://dx.doi.org/10.1016/j.neucom.2015.08.104

Y. Wang et al. / Neurocomputing 184 (2016) 232-242 233

9-layered locally connected sparse auto-encoder, Le et al. [24]
discovered that the network was sensitive to high-level concepts
such as cat faces. Krizhevsky et al. [19] attained record-breaking
performance on the ImageNet in 2012 with a large and deep
convolutional neural network. Zeiler et al. [26] demonstrated
state-of-the-art performance on Caltech-101 and Caltech-256
datasets. Zhu et al. [28] extracted face identity-preserving fea-
tures from an image under any pose and illumination which could
be used to reconstruct the face image in canonical view by
designing a deep network.

Although achieving comparable performance and widely
applied, deep learning is kind of like a “black-box” actually and
there is no very sufficient and strict theoretical system to support.
So a problem is: we have impressive performance using deep
learning but we do not know why theoretically. In deep learning, a
number of researchers tend to make progress by employing
increasingly deep models and complex unsupervised learning
algorithms.

This paper comes from the idea that whether auto-encoder has
some kind of good property which might accumulate when being
stacked and thus contribute to the success of deep learning. We
start from a “building block” of deep learning—auto-encoder and
focus on its dimensionality reduction ability. When restricting the
number of hidden layer nodes less than the number of original
input nodes in an auto-encoder, the desired dimensionality
reduction effect can be achieved.

Based on the above analysis, the main contributions of the
paper can be summarized as follows:

1. We start from auto-encoder and focus on its ability to reduce
the dimensionality, trying to understand the difference between
auto-encoder and state-of-the-art dimensionality reduction
methods. The results show that auto-encoder indeed learn
something different from other methods.

2. We preliminarily investigate the influence of the number of
hidden layer nodes on the performance of auto-encoder on
MNIST and Olivetti face datasets. The results reveal its possible
relation with the intrinsic dimensionality.

On the whole, we expect that analyzing the fundamental
methods in deep learning, e.g. auto-encoder, could help us
understand deep learning better.

2. Auto-encoder based dimensionality reduction

In this section, we briefly introduce auto-encoder, four repre-
sentative dimensionality reduction methods and the concept of
dimensionality reduction and intrinsic dimensionality. Then we
focus on auto-encoder's dimensionality reduction ability, and
investigate the influence of the number of hidden layer nodes in
auto-encoder.

2.1. Auto-encoder

Suppose the original input x belongs to n-dimensional space
and the new representation y belongs to m-dimensional space, an
auto-encoder is a special and tricky three-layered neural network
in which we set the output hy ,(®) = (X, X,, ...,%,)" equal to the
input X=(X1,Xa,...,Xs)". J is the reconstruction error. It is an
unsupervised learning algorithm and uses back propagation
algorithm for training

hw »(%) = g(f(%)) ~ %
JOW.b:x.9) =2 30—y

7
W R 27
A V2 5

)@
/N
e

hW,b(x)

Layer L, Layer L, Layer L,
Fig. 1. The structure of auto-encoder.
Input Code Output

Encoder Decoder

Reconstruction
Error

Fig. 2. The visualization description of auto-encoder.

Figs. 1 and 2 show the structure and the visualization
description of an auto-encoder respectively. As shown in Fig. 2,
from the first layer to the second layer amounts to an encoder f
and from the second layer to the third layer amounts to a deco-
der g. We then minimize the reconstruction error J by adjusting
parameters in the encoder and the decoder to get the code.

Auto-encoder can be seen as a way to transform representation.
When restricting the number of hidden layer nodes m greater than
the number of original input nodes n and adding sparsity con-
straint, the result will be similar to sparse coding. When restricting
the number of hidden layer nodes m less than the number of
original input nodes n, we can get a compressed representation of
the input, which actually achieves desired dimensionality reduc-
tion effect. This paper mainly focuses on the latter case.

The following is a very quick introduction of four representa-
tive dimensionality reduction methods [12], which are to be used
to compare with auto-encoder.

PCA: Principal component analysis is a very popular linear
technique for dimensionality reduction. Given a dataset on R", PCA
aims to find a linear subspace of dimension d lower than n which
attempts to maintain most of the variability of the data.

LDA: Linear discriminant analysis is another popular linear
dimensionality reduction method. The basic idea is to ensure the
samples after projection to have maximum-between-cluster-
distance and minimume-in-cluster-distance in the new subspace.

LLE: Locally linear embedding is a nonlinear approach to reduce
dimensionality by computing low-dimensional, neighborhood
preserving embedding of high-dimensional data. A dataset of
dimensionality n, which is assumed to lie on or near a smooth
nonlinear manifold of dimensionality d < n, is mapped into a sin-
gle global coordinate system of lower dimensionality d. The global
nonlinear structure is recovered by locally linear fits.

Isomap: Isomap is a nonlinear generalization of classical mul-
tidimensional scaling. The main idea is to perform multi-
dimensional scaling, not in the input space, but in the geodesic
space of the nonlinear data manifold. The geodesic distance

234 Y. Wang et al. / Neurocomputing 184 (2016) 232-242

represents the shortest paths along the curved surface of the
manifold measured as if the surface were flat. This can be
approximated by a sequence of short steps between neighboring
sample points.

2.2. Dimensionality reduction ability of auto-encoder

As a kind of common rule, superficially high-dimensional and
complex phenomena can actually be dominated by a small amount
of simple variables in most situations. Dimensionality reduction is
an old and young, dynamic research topic [11,12]. It is looking for a
projection method that maps the data from high feature space to
low feature space. Dimensionality reduction methods in general
can be divided into two categories, linear and nonlinear.

This paper describes auto-encoder's dimensionality reduction
ability by comparing auto-encoder with several linear and non-
linear dimensionality reduction methods in both a number of
cases from two-dimensional and three-dimensional spaces for
more intuitive results and real datasets including MNIST and Oli-
vetti face datasets. More details and results can be seen in
experiment part.

2.3. The number of hidden layer nodes in auto-encoder & intrinsic
dimensionality

In the process of dimensionality reduction, discarding some
dimensions inevitably leads to the loss of information. Thus the
primary problem to be solved is to keep the main and important
characteristics of the original data as much as possible. So the
process of dimensionality reduction is closely related to original
data characteristics.

Intrinsic dimensionality, as an important intrinsic characteristic
of high-dimensional data, can reflect the essential dimension of
data well. Sample data in high-dimensional space generally cannot
diffuse in the whole space; they actually lie in a low-dimensional
manifold embedded in high-dimensional space and the dimen-
sionality of the manifold is the intrinsic dimensionality of the data.

This paper preliminarily investigates the influence of the
number of hidden layer nodes on the performance of auto-
encoder on MNIST and Olivetti face datasets by recording the
change of performance of the classifier when the dimensionality of
the projected representation varies. More details and results can
be seen in experiment part.

3. Experiment
3.1. Experimental setup

There are mainly two parts of experiments included. The first
part is conducted both on the synthesized data and real datasets to
evaluate auto-encoders dimensionality reduction ability. The sec-
ond part is conducted on real datasets to investigate the influence
of the number of hidden layer nodes on performance of auto-
encoder.

3.1.1. Dimensionality reduction

In this subsection, we evaluate auto-encoder's dimensionality
reduction ability compared with several popular dimensionality
reduction methods in a number of cases. We pick PCA and LDA as
representative of linear methods, LLE and Isomap as representa-
tive of nonlinear methods.

On synthesized data: The experiments are conducted on syn-
thesized data in two-dimensional and three-dimensional spaces
because in these situations we can get better visualization results
for an intuitive understanding of auto-encoder. Fig. 3 shows two

5
2
4 J
1
3 4
0
2 4
-1
1 J
-2
0 -2 - 0 1 2
0 50 100

Fig. 3. Two cases from two-dimensional space.

cases from two-dimensional space and Fig. 4 shows three trans-
formations of helix cases from three-dimensional space. In these
cases, we use in total five methods including auto-encoder to do
the dimensionality reduction, i.e.

R? > R!
R > R!

to see how the results auto-encoder get differ from the other four
dimensionality reduction methods. After the dimensionality
reduction, the original points from two or three-dimensional
spaces are projected into one-dimensional space and the data
obtained are zoomed to a certain range further to have better
visual quality. Results can been found in Section 3.2.

On real datasets: MNIST is a classical dataset of handwritten
digits with 60,000 training images and 10,000 testing images.
Every image is normalized and centralized to unified size. Image
size is 28 by 28. Olivetti face dataset contains 400 images from 40
different people, 10 images for each. Image size is 64 by 64, we
first resize the image from 64%64 to 28*28 before the real process
to speed up.

The images in both two datasets are grayscale images. Fig. 5
shows a number of images from MNIST and Olivetti face datasets.

Take pixel intensity as the original representation and use auto-
encoder and PCA to do the dimensionality reduction. When using
auto-encoder, we visualize the function learned by auto-encoder
by weights between the first layer and the second layer to see
what does auto-encoder exactly learn. Besides, when the dimen-
sionality of the transformed new representation is 2 or 3, i.e.,
when the original image is projected to two or three-dimensional
spaces, we can visualize the comparison results between auto-
encoder and PCA. Results can been found in Section 3.2.

3.1.2. Influence of the number of hidden layer nodes

In this subsection, we preliminarily investigate the influence of
the number of hidden layer nodes on the performance of auto-
encoder on MNIST and Olivetti face datasets.

For MNIST dataset, every image has a total of 28%28 =
784 pixels and the intrinsic dimensionality is known to be 10. Use
auto-encoder to reduce the dimensionality from 784 to s, i.e.

R784 SRS

and do the classification with softmax classifier. Record the change
of performance of the classifier when the dimensionality of the
new representation s varies.

The same goes for the Olivetti face dataset. Results can been
found in Section 3.2.

Y. Wang et al. / Neurocomputing 184 (2016) 232-242 235

25 50
20 40
15
30
10
20
5
0

MNIST dataset

3.2. Dimensionality reduction

3.2.1. On synthesized data from R? to R

In this subsection, we implement five methods within two
different cases in two-dimensional space to see how auto-encoder
differs from other dimensionality reduction methods.

The first case: In the first and simplest logarithmic curve case,
all methods do a good job. Results of PCA, LDA and Isomap are
stable, as shown in Fig. 6. Results of LLE and auto-encoder are
relatively not that stable, which means when you run the program
twice you may get two different results. Two examples of LLE and
auto-encoder are shown in Fig. 7. Although the results are not
stable, most of the results can be seen as “acceptable”, which
means that the points after dimensionality reduction are mono-
tonic increasing or decreasing, thus keeping the geometry char-
acteristic of the original points.

In this case, it seems that auto-encoder performs no different
from other four methods, but go a little more deeply, you will find
some difference.

As can be seen from Figs. 6 and 7, there are 100 two-
dimensional points (xq,Xs,...X100) in the logarithmic curve indi-
cated by red ‘+’ ; we use five dimensionality reduction methods to

3.5

Olivetti face dataset

Fig. 5. Images from two datasets: (a) MNIST dataset and (b) Olivetti face dataset.

reduce the dimensionality and project the original points to 100
one-dimensional points (y;,¥,,...Y100) on the horizontal axis
indicated by black dots.

Use dis to represent the distance between two points and use
dif to denote the difference values between each two adjacent
points, i.e.,

dif) =Yyi 14

Since we want to evaluate the quality of the dimensionality
reduction, it is appropriate to use dis(y;,y;,;) to measure
dis(x;, x; .1). dif is a unary array variable and has 99 values in it. We
get five difs for five methods, and draw a bar graph as shown in
Fig. 8.

From Fig. 8, we can find the following points: (1) for PCA, LLE
and Isomap three methods, dif is close to a constant. Since we use
new projection points to represent the original points, this means
in these three methods, dis(x1,x3), dis(xso, Xs1) and dis(xgg, X109) are
almost the same. That, however, is not the case. The distances
between each two adjacent points in the logarithmic curve should
not be regarded as the same. It is more obvious for dis(x;,x;) and
dis(xg9,X100)- (2) For LDA, dif is monotonic decreasing which means
dis(x1,x) is much larger than dis(xg9, X100). (3) For auto-encoder, dif

—y;=dis(y, i) < disxi,Xi11)

236 Y. Wang et al. / Neurocomputing 184 (2016) 232-242

a b

5 - - - - - - - - T 5

45
4l
351
3l
251
2l
151
1L
051

0
50 60 70 80 90 100 0
PCA

30 40

LDA

0
0O 10 20 30 40 50 60 70 80 90 100

Isomap

Fig. 6. Three stable results in the logarithmic curve case: (a) PCA, (b) LDA and (c) Isomap.

b

5 T T T T T T . . .

45

15

0 \ " \ . \ ‘. J : ’ .

0 10 20 30 40 50 60 70 80 90 100
LLE

0 10 20 30 40 50 60 70 80 90 100
Auto-encoder

Fig. 7. Two unstable results in the logarithmic curve case: (a) LLE and (b) auto-encoder.

has the tendency of ascending first and descending in succession
which means dis(x1, x3) is nearly the same with dis(xgg, X100), While
dis(xs9,Xs51) is a little larger than them.

It is hard to say which method is better or which result is more
accurate. It depends on the way you think. The first 20 points
increase slowly in the horizontal axis direction but quickly in the
vertical axis direction, while the last 20 points are the opposite.
Relatively, the middle points just fall in between. From this per-
spective, auto-encoder seems to do a better projection than other
four methods and has a better local distance preserving nature.

The second case: In the second concentric circles case, results of
PCA, LDA, LLE and Isomap are the same, as shown in Fig. 9(a). This
is a good result, since four symmetric points are projected into the
same point. Thus, in this case, these four methods all do a good
job. However the result of auto-encoder is relatively different, as
shown in Fig. 9(b). It seems like a bad and confusing result at first
sight, but again go in deeper and try to change an angle to consider
this problem, you will find something.

Let us move to Fig. 10. In Fig. 10(a), there are four points in the
concentric circles which are mapped to the maximum and minimum
values of each circle after dimensionality reduction, indicated by pink
and cyan lines respectively, and the tangents of these four points are
parallel. In Fig. 10(b), there are two groups of symmetrical points
which happen to be mapped to the same value zero, indicated by
green lines. Auto-encoder maps corresponding points within two
close concentric circles into almost the same point. Every half a circle
corresponds to a “minimum-to-maximum” cycle. In other words, the

4+ 4

Isomap Auto—encoder

Fig. 8. Dif of five methods in the logarithmic curve case.

concentric circles shown in Fig. 10 can be seen as made up of four
semicircles, or four repetitive structures and auto-encoder maps four
repetitive semicircles to almost the same range.

We can do a little bit mathematical deduction here, which is
simple enough to explain why a single point is projected to the
maximum value or zero. Use (X1, X,) to denote the original point, y
to denote the projected point, (w;,w,) to denote the trained

Y. Wang et al. / Neurocomputing 184 (2016) 232-242 237

. * ¢ ¢ ° .
L . . l 15r 1
1 5 .0.l...... .'
. ... ° L
o o . .
1r .- ..o. '... 0. B 1r 1
0. l‘- °
05 [: s K . 1 05 .]
° e e o :
. : ° o : |
o N 2 B :
. N
. . H . .
“ o | .]
-05 | 0. . K : 4 -0.5
.. ..l
- O™ S 1 7 1
‘e .'o.. o*® o*
-15 | {1 -15} 1
.. ..
o) o
-2 F A\ o esee® Y 4 -2 i
25 1 -25¢} 1
-3 , " . ! -3 -
-2 -1 0 1 2 -25 -2 -15 -1 -05 0 0.5 1 1.5 2 2.5
PCA Auto-encoder
Fig. 9. Two results in the concentric circles case: (a) PCA and (b) auto-encoder.
a b
2 —rs e 2 , .
157) 1 st |
1t '.. .'.. ... B 1t 4
o5F 0 N Y A 05| : ; 1
of o/ % o of T
-05 y) N 1 -05} . R ,
-1y / s] -1p ,
-15 | . / 1 -5} 1
_27 ..'..o.o"‘ - _2, 4
=251 1 -25} R
-3 . e - - - . . -3 " .
-25 -2 -15 -1 -05 0 0.5 1 1.5 2 25 -25 -2 -15 -1 -05 0 0.5 1 1.5 2 25

Fig. 10. Result of auto-encoder in the concentric circles case.

-1

Circular helix Conical helix Planar helix

Fig. 11. Three results in three helix cases: (a) circular helix, (b) conical helix and (c) planar helix.

238 Y. Wang et al. / Neurocomputing 184 (2016) 232-242

weights and b to denote the trained bias. Consider the encoder
only, we can have the following:

y = sigmoid(w1x1 +W5%x3 +b)

By analyzing the trained weights (w;,w,) and original points
(Xmax1> Xmax2)» (Xmin1>Xmin2) Drojected to the maximum and the mini-
mum value, we find two equations: (1) w; = —W5; (2) Xmin1 = Xmax2»
Xmin2 = Xmax1-

Plug these equations into the formula above, we can have:

Ymax = SIgMOId(W13Xmax1 +W23Xmax2 +b)
= sigmoid(W1#(Xmax1 — Xmax2) +b)

Yimin = SigmMoid(W15Xmin1 +W2sXmin2 +b)
= Singid(Wl *(xmaxz —Xmax1) + b)

When (Xmax1 —Xmax2) achieves the maximum value, (Xmax2 — Xmax1)
achieves the minimum value at the same time. To reach this, X;;qx1
should be the maximum and X;,,4x> should be the minimum among
the coordinates of the original points, which is true.

3.2.2. On synthesized data from R> to R
In this subsection, we implement PCA and auto-encoder within
three transformations of helix cases in three-dimensional spaces.
In these three cases, auto-encoder is always doing a good job.
Results are shown in Fig. 11. A similar analysis of dif of the circular
helix can be found in Fig. 12. From the results we can see, in some
cases, auto-encoder not only reduces dimensionality, but can also

0.025 T T T T T

0.015 1

0.005 | 1

PCA LDA LLE Isomap Auto—encoder

Fig. 12. Dif of five methods in the circular helix case.

s =10

detect repetitive structures. From the viewpoint of information
theory, compressing the data dimensionality is to find redundancy
while repetitive structure is a kind of redundancy. We believe that
this is a good property for many applications.

3.2.3. On real datasets from R’ to R

In this subsection, we implement PCA and auto-encoder within
real datasets—MNIST and Olivetti face dataset to see how auto-
encoder differs from PCA and give visualization results.

Visualize the function learned by auto-encoder: In this case, we
want to see what does auto-encoder exactly learn after training.
For MNIST dataset, we set s equals to 2, 10 and 300 to visualize the
function learned by auto-encoder by weights between the first
layer and the second layer. For Olivetti face dataset, we resize the
image from 6464 to 28*28 and then set s equals to 10, 40 and 300
for visualization. Results are shown in Figs. 13 and 14. Obviously,
the features auto-encoder learned, e.g. strokes and faces, are
important for computer vision tasks.

Visualize the comparison results between auto-encoder and PCA:
In this case, we set s equals to 2 and 3 and use auto-encoder and
PCA to reduce the dimensionality respectively in MNIST dataset.
Then we visualize the comparison results between auto-encoder
and PCA. Results are shown in Figs. 15-17.

Fig. 15 shows when s=2, every training example is projected to
a point in two-dimensional space using auto-encoder and PCA
respectively. All training examples of 10 classes are denoted in
different colors. Same goes for Fig. 16, except that s=3.

Fig. 17 shows training examples in every single class.
Fig. 17(a) displays the visualization of projected points of digit
1 using auto-encoder, while Fig. 17(g) displays the visualization of
digit 1 using PCA. From the results, we can see that in this case
auto-encoder performs better than PCA. Compared to PCA, auto-
encoder tends to project images of the same class to edges and
corners, which can lead to preferable results than PCA.

3.3. Influence of the number of hidden layer nodes

3.3.1. MNIST dataset

Using auto-encoder to reduce the dimensionality from 784 to s,
we record the change of softmax classifier performance when the
dimensionality s varies.

For every dimensionality, we run the program for five times
and get the average result. Results are shown in Fig. 18. Blue “x”
represents average result of auto-encoder before finetuning and
blue “.” represents average result of auto-encoder after finetuning.

Fig. 13. Visualization of MNIST dataset: (a) s= 2, (b) s = 10 and (c) s = 300.

Y. Wang et al. / Neurocomputing 184 (2016) 232-242 239

Auto-encoder

2 03 04 05 06 07 08 09 1

PCA

Fig. 15. Dimensionality reduction: R’4 - R?: (a) auto-encoder and (b) PCA.

Auto-encoder

Fig. 16. Dimensionality reduction: R’ — R3: (a) auto-encoder and (b) PCA.

From Fig. 18, the accuracy rises at first goes down later and then
starts to level off, rising slowly at the same time. There is an
observation that when the dimensionality s is near 10, just equal
to the intrinsic dimensionality of original data, accuracy is

PCA

relatively high. This might reveals a possible relation between the
number of hidden layer nodes and the intrinsic dimensionality of
original data and gives us some advice on choosing the number of
hidden layer nodes.

240

Y. Wang et al. / Neurocomputing 184 (2016) 232-242

a b c
1 N 1
0.9 09 |
08 0.8
07 0.7 . °
0.6 06 | .
0.5 05}
04 0.4
03 03 .
0.2 02 . :
4 0.1 01 f . TR
. . o o 0 L.
0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1
Auto-encoder for digit 1 Auto-encoder for digit 4 Auto-encoder for digit 5
1 0.8
09
0.7 4
08 |
0.6 1
07 |
06 [0.5 4
0.5 N 0.4 3
04 0.3
03} °
0.2
02} .y
041 [. . . 0.1 o
0 . : . rl 0 P L. L L > L L 12 o
0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 03 04 05 06 07 08 09 1
Auto-encoder for digit 10
g [
5 5
al 4]
3 g
5l
2 4
2} "]
1 0 g
4]
ol
>]
41
4]
-2 -6 -4
-5 -4 -3 -2 -1 0 1 2 -4 -3 -2 -1 0 1 2 3 4 5 6 -4 -3 -2 -1 0 1 2 3 4 5 6
PCA for digit 1 PCA for digit 4 PCA for digit 5
j k I
4 3 0 5
s]
2]
1 g
0 g
-1 |
-2]
-3]
-4]
-5

6

PCA for digit

1

PCA for digit 9

4

PCA for digit 10

Fig. 17. Dimensionality reduction: R734 - R?: (a) auto-encoder for digit 1, (b) auto-encoder for digit 4, (c) auto-encoder for digit 5, (d) auto-encoder for digit 8, (e) auto-
encoder for digit 9, (f) auto-encoder for digit 10, (g) PCA for digit 1, (h) PCA for digit 4, (i) PCA for digit 5, (j) PCA for digit 8, (k) PCA for digit 9 and (1) PCA for digit 10.

In this case, we run the program for 15 times when the
dimensionality of the new representation is between 5 and 15
(near 10) to get more stable results. Red “:” represents maximum

result of auto-encoder before finetuning and red “.” represents

maximum result of auto-encoder after finetuning. Results are
shown in Fig. 19. We can see that when the dimensionality s is
near 10, corresponding accuracy is basically over 50%, which is
higher than neighbors.

Y. Wang et al. / Neurocomputing 184 (2016) 232-242 241

1 1 T T T T
0.9 B
0.8 [B
0.7 u
oy
8 0.6 -
3
S 05 .
g0
0.4 B
0.3k B
0.2 i —+— Ave before finetuning| _|
’ — Ave after finetuning
0.1 T | | | | | | |
0 100 200 300 400 500 600 700 800
Dimensionality
Fig. 18. Softmax classifier accuracy with the dimensionality from 1 to 775 in MNIST dataset.
1
09 .—ﬁk |
0.8 i
0.7 | —
5, 06F -
)
s
3 05 4
o
<
04 B
03} i
02k ——— Max before finetuning |
’ Max after finetuning
01 L —#— Ave before finetuning i
' Ave after finetuning
0 Il Il Il Il Il
4 6 8 10 12 14 16

Dimensionality

Fig. 19. Softmax classifier accuracy with the dimensionality from 5 to 15 in MNIST dataset. (For interpretation of the references to color in this figure, the reader is referred to
the web version of this paper.)

N N7
09+ B
0.8 B
0.7 - —
> 06 —
o A
o
5 05 |
o
o
< o4l -
0.3 + B
02| —+— Ave before finetuning | |
i —— Ave after finetuning
04 L —+#— Max before finetuning| |
’ —— Max after finetuning
0 I | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100

Dimensionality

Fig. 20. Softmax classifier accuracy with the dimensionality from 1 to 100 in Olivetti face dataset. (For interpretation of the references to color in this figure, the reader is
referred to the web version of this paper.)

242 Y. Wang et al. / Neurocomputing 184 (2016) 232-242

3.3.2. Olivetti face dataset

First resize the image from 6464 to 2828, and the following
steps are the same as above. Results are shown in Fig. 20.

However, we do not observe the same phenomenon as in
MNIST dataset. A possible reason maybe MNIST dataset is simple,
and a small number of hidden layer nodes are enough to model
the data. When we set the number of hidden layer nodes equal to
the intrinsic dimensionality, hidden layer nodes may fit the
structure of original data better. So that we get almost the best
result when s equals to 10 in MNIST dataset.

While the Olivetti face dataset is much more complicated than
MNIST, and a small number of hidden layer nodes are not able to
model the data. Thats maybe why in this case the accuracy is just
rising along the dimensionality s.

4. Conclusion

This paper starts from auto-encoder and focuses on its ability to
reduce the dimensionality. Firstly, experiments show that the
results of auto-encoder indeed differ from other dimensionality
reduction methods. In some cases, auto-encoder not only reduces
dimensionality, but can also detect repetitive structures. We
believe that this is a good property for many applications. Maybe
in situations with repetitive structures, auto-encoder is more
suitable. Secondly, the paper preliminarily investigates the influ-
ence of the number of hidden layer nodes on performance of auto-
encoder. For classification on MNIST dataset without finetuning,
the best results are achieved when the number of hidden layer
nodes is set around the intrinsic dimensionality of the dataset.
This might reveal the possible relation between the number of
hidden layer nodes and the intrinsic dimensionality of the dataset.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (No. 61472103) and Key Program (No.
61133003).

References

[1] M.A. Sartori, P.J. Antsaklis, A simple method to derive bounds on the size and
to train multilayer neural networks, IEEE Trans. Neural Netw. 2 (4) (1991)
467-471.

[2] M. Arbib, Review of 'Perceptrons: an introduction to computational geometry’,
IEEE Trans. Inf. Theory 15 (6) (1969) 738-739.

[3] G.B. Huang, Learning capability and storage capacity of two-hidden-layer
feedforward networks, IEEE Trans. Neural Netw. 14 (2) (2003) 274-281.

[4] Yoshua Bengio, Learning deep architectures for Al, Found. Trends® Mach.
Learn. 2 (1) (2009) 1-127.

[5] Yoshua Bengio, Deep learning of representations: looking forward, in: Statis-
tical Language and Speech Processing, 2013, pp. 1-37.

[6] Yoshua Bengio, Aaron Courville, Pascal Vincent, Unsupervised feature learning
and deep learning: a review and new perspectives, in: CoRR, 2012.

[7] H. Bourlard, Y. Kamp, Auto-association by multilayer perceptrons and singular
value decomposition, Biol. Cybern. 59 (4-5) (1988) 291-294.

[8] S.C. Huang, Y.F. Huang, Bounds on the number of hidden neurons in multilayer
perceptrons, IEEE Trans. Neural Netw. 2 (1) (1991) 47-55.

[9] C. Xiang, S.Q. Ding, TH. Lee, Geometrical interpretation and architecture
selection of MLP, IEEE Trans. Neural Netw. 16 (1) (2005) 84-96.

[10] Corinna Cortes, Vladimir Vapnik, Support-vector networks, Mach. Learn.
(1995) 273-297.

[11] David Demers, Garrison Cottrell, Non-linear dimensionality reduction, Adv.
Neural Inf. Process. Syst. (1993) 580-587.

[12] Ali Ghodsi, Dimensionality Reduction a Short Tutorial, Department of Statistics
and Actuarial Science, 2006.

[13] Geoffrey Hinton, A practical guide to training restricted Boltzmann machines,
Neural Netw.: Tricks Trade (2012) 599-619.

[14] Geoffrey Hinton, Simon Osindero, A fast learning algorithm for deep belief
nets, Neural Comput. 18 (2006) (2006).

[15] Geoffrey Hinton, R. Salakhutdinov, Reducing the dimensionality of data with
neural networks, Science 313 (5786) (2006) 504-507.

[16]]JJ. Hopfield, D.W. Tank, Neural computation of decisions in optimization
problems, Biol. Cybern. 52 (3) (1985) 141-152.

[17] J. Wang, H.B. He, D.V. Prokhorov, A folded neural network autoencoder for
dimensionality reduction, Proc. Comput. Sci. 13 (2012) 120-127.

[18] Mark A. Kramer, Nonlinear principal component analysis using auto-
associative neural networks, AIChE J. 37 (2) (1991) 233-243.

[19] Alex Krizhevsky, Sutskever Ilya, Geoffrey Hinton, Imagenet classification with
deep convolutional neural networks, Adv. Neural Inf. Process. Syst. (2012)
1097-1105.

[20] Marvin Minsky, Seymour Papert, Perceptrons: An Introduction to Computa-
tional Geometry (Expanded edition), 1988.

[21] Japkowicz Nathalie, S. Hanson, M. Gluck, Nonlinear autoassociation is not
equivalent to PCA, Neural Comput. 12 (3) (2000) 531-545.

[22] S. Tamura, Capabilities of a three layer feedforward neural network, in: IEEE
International Joint Conference on Neural Networks, 1991, pp. 2757-2762.

[23] S. Tamura, M. Tateishi, Capabilities of a four-layered feedforward neural net-
work: four layers versus three, IEEE Trans. Neural Netw. 8 (2) (1997) 251-255.

[24] Q.V. Le, Building high-level features using large scale unsupervised learning,
in: IEEE International Conference on Acoustics, Speech and Signal Processing,
2013, pp. 8595-8598.

[25] Wang Wei, Huang Yan, Wang Yizhou, Wang Liang, Generalized autoencoder: a
neural network framework for dimensionality reduction, in: IEEE Conference
on Computer Vision and Pattern Recognition Workshops, 2014, pp. 496-503.

[26] Matthew D. Zeiler, Rob Fergus, Visualizing and understanding convolutional
networks, in: CoRR, 2013.

[27] Hu Zhaohua, Song Yaoliang, Dimensionality reduction and reconstruction of
data based on autoencoder network, J. Electron. Inf. Technol. 31 (5) (2009)
1189-1192.

[28] Zhenyao Zhu, Ping Luo, Xiaogang Wang, Xiaoou Tang, Deep learning identity-
preserving face space, in: IEEE International Conference on Computer Vision,
2013, pp. 113-120.

Yasi Wang is currently a Ph.D. candidate at Harbin
Institute of Technology, Harbin, China. Her research
interests include image and video understanding,
machine learning and deep learning.

Hongxun Yao received the B.S. and M.S. degrees in
Computer Science from the Harbin Shipbuilding Engi-
neering Institute, Harbin, China, in 1987 and in 1990,
respectively, and received Ph.D. degree in Computer
Science from Harbin Institute of Technology in 2003.
Currently, she is a Professor with School of Computer
Science and Technology, Harbin Institute of Technology.
Her research interests include computer vision, multi-
media computing, and human-computer interaction.
She has published five books and over 200 scientific
papers.

Sicheng Zhao is currently a Ph.D. candidate at Harbin
Institute of Technology, Harbin, China. His research
interests include affective computing, social media
analysis and multimedia information retrieval.

http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref1
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref1
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref1
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref1
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref2
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref2
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref2
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref3
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref3
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref3
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref4
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref4
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref4
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref4
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref7
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref7
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref7
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref8
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref8
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref8
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref9
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref9
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref9
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref10
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref10
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref10
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref11
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref11
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref11
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref13
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref13
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref13
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref14
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref14
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref15
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref15
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref15
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref16
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref16
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref16
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref17
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref17
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref17
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref18
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref18
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref18
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref19
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref19
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref19
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref19
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref21
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref21
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref21
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref23
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref23
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref23
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref27
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref27
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref27
http://refhub.elsevier.com/S0925-2312(15)01767-1/sbref27

	Auto-encoder based dimensionality reduction
	Introduction
	Auto-encoder based dimensionality reduction
	Auto-encoder
	Dimensionality reduction ability of auto-encoder
	The number of hidden layer nodes in auto-encoder & intrinsic dimensionality

	Experiment
	Experimental setup
	Dimensionality reduction
	Influence of the number of hidden layer nodes

	Dimensionality reduction
	On synthesized data from R2 to R1
	On synthesized data from R3 to R1
	On real datasets from R784 to Rs

	Influence of the number of hidden layer nodes
	MNIST dataset
	Olivetti face dataset

	Conclusion
	Acknowledgments
	References

