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Abstract

Learning disentanglement aims at finding a low dimen-

sional representation which consists of multiple explana-

tory and generative factors of the observational data. The

framework of variational autoencoder (VAE) is commonly

used to disentangle independent factors from observations.

However, in real scenarios, factors with semantics are not

necessarily independent. Instead, there might be an under-

lying causal structure which renders these factors depen-

dent. We thus propose a new VAE based framework named

CausalVAE, which includes a Causal Layer to transform

independent exogenous factors into causal endogenous ones

that correspond to causally related concepts in data. We

further analyze the model identifiabitily, showing that the

proposed model learned from observations recovers the true

one up to a certain degree. Experiments are conducted on

various datasets, including synthetic and real word bench-

mark CelebA. Results show that the causal representations

learned by CausalVAE are semantically interpretable, and

their causal relationship as a Directed Acyclic Graph (DAG)

is identified with good accuracy. Furthermore, we demon-

strate that the proposed CausalVAE model is able to generate

counterfactual data through “do-operation” to the causal

factors.

1. Introduction

Disentangled representation learning is of great impor-

tance in various applications such as computer vision, speech

and natural language processing, and recommender systems

[9, 20, 8]. The reason is that it might help enhance the

performance of models, i.e. improving the generalizability,

*Corresponding author.

robustness against adversarial attacks as well as the explan-

ability, by learning data’s latent disentangled representation.

One of the most common frameworks for disentangled rep-

resentation learning is Variational Autoencoders (VAE), a

deep generative model trained to disentangle the underly-

ing explanatory factors. Disentanglement via VAE can be

achieved by a regularization term of the Kullback-Leibler

(KL) divergence between the posterior of the latent factors

and a standard Multivariate Gaussian prior, which enforces

the learned latent factors to be as independent as possible. It

is expected to recover the latent variables if the observation

in real world is generated by countable independent factors.

To further enhance the independence, various extensions of

VAE consider minimizing the mutual information among

latent factors. For example, Higgins et al. [6] and Burgess et

al. [3] increased the weight of the KL divergence term to en-

force independence. Kim et al. [12, 4] further encourage the

independence by reducing total correlation among factors.

Most existing works of disentangled representation learn-

ing make a common assumption that the real world observa-

tions are generated by countable independent factors. Never-

theless we argue that in many real world applications, latent

factors with semantics of interest are causally related and

thus we need a new framework that supports causal disen-

tanglement.

Consider a toy example of a swinging pendulum in Fig. 1.

The position of the illumination source and the angle of

the pendulum are causes of the position and the length of

the shadow. Through causal disentangled representation

learning, we aim at learning representations that correspond

to the above four concepts. Obviously, these concepts are not

independent and existing methods may fail to extract those

factors. Furthermore, causal disentanglement allow us to

manipulate the causal system to generate counterfactual data.

For example, we can manipulate the latent code of shadow to
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Figure 1. A swinging pendulum: an illustrative example

create new pictures without shadow even there are pendulum

and light. This corresponds to the ”do-operation” [24] in

causality, where the system operates under the condition

that certain variables are controlled by external forces. A

deep generative model that supports ”do-operation” is of

tremendous value as it allows us to ask “what-if” questions

when making decisions.

In this paper, we propose a VAE-based causal disentan-

gled representation learning framework by introducing a

novel Structural Causal Model layer (Mask Layer), which

allows us to recover the latent factors with semantics and

structure via a causal DAG. The input signal passes through

an encoder to obtain independent exogenous factors and then

a Causal Layer to generate causal representation which is

taken by the decoder to reconstruct the original input. We

call the whole process Causal Disentangled Representation

Learning. Unlike unsupervised disentangled representation

learning of which the feasibility is questionable [18], addi-

tional information is required as weak supervision signals to

achieve causal representation learning. By “weak supervi-

sion”, we emphasize that in our work, the causal structure of

the latent factors is automatically learned, instead of being

given as a prior in [14]. To train our model, we propose a new

loss function which includes the VAE evidence lower bound

loss and an acyclicity constraint imposed on the learned

causal graph to guarantee its “DAGness”. In addition, we an-

alyze the identifiablilty of the proposed model, showing that

the learned parameters of the disentangled model recover

the true one up to certain degree. The contribution of our

paper is three-fold. (1) We propose a new framework named

CausalVAE that supports causal disentanglement and “do-

operation”; (2) Theoretical justification on model identifiabil-

ity is provided; (3) We conduct comprehensive experiments

with synthetic and real world face images to demonstrate

that the learned factors are with causal semantics and can

be intervened to generate counterfactual images that do not

appear in training data.

2. Related Works

In this section, we review state-of-the-art disentangled

representation learning methods, including some recent ad-

vances on combining causality and disentangled represen-

tation learning. We also present preliminaries of causal

structure learning from pure observations which is a key

ingredient of our proposed CausalVAE framework.

2.1. Disentangled Representation Learning

Conventional disentangled representation learning meth-

ods learn mutually independent latent factors by an encoder-

decoder framework. In this process, a standard normal dis-

tribution is used as a prior of the latent code. A variational

posterior q(z|x) is then used to approximate the unknown

true posterior p(z|x). This framework was further extended

by adding new independence regularization terms to the orig-

inal loss function, leading to various algorithms. β-VAE [6]

proposes an adaptation framework which adjusts the weight

of KL term to balance between independence of disentangled

factors and the reconstruction performance. While factor

VAE [4] proposes a new framework which focuses solely

on the independence of factors. Ladder VAE [16] on the

other hand, leverages the structure of ladder neural network

to train a structured VAE for hierarchical disentanglement.

Nevertheless the aforementioned unsupervised disentangled

representation learning algorithms do not perform well in

some situations where there is complex causal relationship

among factors. Furthermore, they are challenged for lacking

inductive bias and thus the model identifiability cannot be

guaranteed [18]. The identifiability problem of VAE is de-

fined as follows: if the parameters θ̃ learned from data lead

to a marginal distribution equal to the true one parameterized

by θ, i.e., pθ̃(x) = pθ(x), then the joint distributions also

match, i.e. pθ̃(x, z) = pθ(x, z). Therefore, the rotation

invariance of prior p(z) (standard Multivariate Gaussian dis-

tribution) will lead the unindentifiable of p(z). Khemakhem

et al. [11] prove that there is infinite number of distinct mod-

els entailing the same joint distributions, which means that

the underlying generative model is not identifiable through

unsupervised learning. On the contrary, by leveraging a few

labels, one is able to recover the true model [21, 18]. Kulka-

rni et al. [15] and Locatello et al. [19] use additional labels to

reduce the model ambiguity. Khemakhem et al. [11] gives an

identifiability of VAE with additional inputs, by leveraging

the theory of nonlinear Independent Component Analysis

(nonlinear ICA) [2].

2.2. Causal Discovery & Causal Disentangled Rep­
resentation Learning

We refer to causal representation as ones structured by

a causal graph. Discovering the causal graph from pure

observations has attracted large amounts of attention in the

past decades [7, 33, 28]. Methods for causal discovery use
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Figure 2. Model structure of CausalVAE. The encoder takes observation x as inputs to generate independent exogenous variable ǫ, whose

prior distribution is assumed to be standard Multivariate Gaussian. Then it is transformed by the Causal Layer into causal representations z

(Eq. 1) with a conditional prior distribution p(z|u). A Mask Layer is then applied to z to resemble the SCM in Eq. 2. After that, z is taken

as the input of the decoder to reconstruct the observation x.

either observational data or a combination of observational

and interventional data. We first introduce a set of methods

based on observational data. Pearl et al. [24] introduced

a Probabilistic Graphical Models (PGMs) based language

to describe causality among variables. Shimizu et al. [28]

proposed an effective method called LiNGAM to learn the

causal graph and they prove the model identifiability un-

der the linearity and non-Gaussianity assumption. Zheng et

al. [34] proposed NOTEARs with a fully differentiable DAG

constraint for causal structure learning, which drastically

reduces a very complicated combinatorial optimization prob-

lem to a continuous optimization problem. Zhu et al. [36]

proposed a flexible and efficient Reinforcement Learning

(RL) based method to search over a DAG space for a best

graph with a highest score. When interventions are doable,

that is, one can manipulate the causal system and collect

data under interventions, methods are proposed for causal

discovery. Tillman et al. [31, 5] show the identifiability of

learned causal structure from interventional data. Peters et

al. [10, 25, 26] explores the structure invariance across mul-

tiple domains under interventions to identify causal edges.

Recently, the community has raised interest of combining

causality and disentangled representation. Suter et al. [30]

used causality to explain disentangled latent representations.

Kocaoglu et al. [14] proposed a method called CausalGAN

which supports ”do-operation” on images but it requires the

causal graph given as a prior. Instead of assuming inde-

pendent latent factors, Besserve et al. [1] adopts dependent

latent factors in the model. It relies on the principle of “in-

dependence mechanism” or modularity for disentanglement,

and design a layer containing a few non-structured nodes,

representing outputs of mutually independent causal mecha-

nisms [26], which contribute together to the final predictions

to achieve disentanglement. In our model, we disentangle

factors by causally structured layers (masking layer), and the

model structure is different from theirs. Schölkopf et al. [27]

claims the importance and necessity of causal disentangled

representation learning but it still remains conceptual. To

the best of our knowledge, our work is the first one that

successfully implements the idea of causal disentanglement.

3. Causal Disentanglement in Variational Au-

toencoder

We start with the definition of causal representation, and

then propose a new framework to achieve causal disentangle-

ment by leveraging additional inputs, e.g. labels of concepts.

Firstly, we give an overview of our proposed CausalVAE

model structure in Fig. 2. A Causal Layer, which essentially

describes a Structural Causal Model (SCM) [28], is intro-

duced to a conventional VAE network. The Causal Layer

transforms the independent exogenous factors to causal en-

dogenous factors corresponding to causally related concepts

of interest. A mask mechanism [22] is then used to propagate

the effect of parental variables to their children, mimicking

the assignment operation of SCMs. Such a Causal Layer is

the key to supporting intervention or “do-operation” to the

system.

3.1. Transforming Independent Exogenous Factors
into Causal Representations

Our model is within the framework of VAE-based dis-

entanglement. In addition to the encoder and the decoder

structures, we introduce a Structural Causal Model (SCM)

layer to learn causal representations. To formalize causal
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representation, we consider n concepts of interest in data.

The concepts in observations are causally structured by a

Directed Acyclic Graph (DAG) with an adjacency matrix A.

Though a general nonlinear SCM is preferred, for simplicity,

in this work, the Causal Layer exactly implements a Linear

SCM as described in Eq. 1 (shown in Fig. 2 1©),

z = A
T
z+ ǫ = (I −A

T )−1ǫ, ǫ ∼ N (0, I), (1)

where A is the parameters to be learnt in this layer. ǫ are

independent Gaussian exogenous factors and z ∈ R
n is struc-

tured causal representation of n concepts that is generated

by a DAG and thus A can be permuted into a strictly upper

triangular matrix.

Unsupervised learning of the model might be infeasible

due to the identifiability issue as discussed in [18]. To ad-

dress this problem, similar to iVAE [11], we adopt additional

information u associated with the true causal concepts as

supervising signals. In our work, we use the labels of the

concepts. The additional information u is utilized in two

ways. Firstly, we propose a conditional prior p(z|u) to reg-

ularize the learned posterior of z. This guarantees that the

learned model belongs to an identifiable family. Secondly,

we also leverage u to learn the causal structure A. Besides

learning the causal representations, we further enable the

model to support intervention to the causal system to gener-

ate counterfactual data which does not exist in the training

data.

3.2. Structural Causal Model Layer

Once the causal representation z is obtained, it passes

through a Mask Layer [22] to reconstruct itself. Note that

this step resembles a SCM which depicts how children are

generated by their corresponding parental variables. We will

show why such a layer is necessary to achieve intervention.

Let zi be the ith variable in the vector z. The adjacency ma-

trix associated with the causal graph is A = [A1| . . . |An]
where Ai ∈ R

n is the weight vector such that Aji encodes

the causal strength from zj to zi. We have a set of mild

nonlinear and invertible functions [g1, g2, . . . , gn] that map

parental variables to the child variable. Then we write

zi = gi(Ai ◦ z;ηi) + ǫi, (2)

where ◦ is the element-wise multiplication and ηi is the pa-

rameter of gi(·) (as shown in Fig. 2 3©). Note that according

to Eq. 1, we can simply write zi = A
T
i z + ǫi. However,

we find that adding a mild nonlinear function gi results in

more stable performances. To show how this masking works,

consider a variable zi and Ai ◦ z equals a vector that only

contains its parental information as it masks out all zi’s non-

parent variables. By minimizing the reconstruction error,

the adjacency matrix A and the parameter ηi of the mild

nonlinear function gi are trained.

This layer makes intervention or ”do-operation” possible.

Intervention [24] in causality refers to modifying a certain

part of a system by external forces and one is interested in

the outcome of such manipulation. To intervene zi, we set

zi on the RHS of Eq. 2 (corresponding to the i−th node of z

in the first layer in Fig. 2) to a fixed value, and then its effect

is delivered to all its children as well as itself on the LHS

of Eq. 2 (corresponding to some nodes of z in the second

layer). Note that intervening the cause will change the effect,

whereas intervening the effect, on the other hand, does not

change the cause because information can only flow into

the next layer from the previous one in our model, which is

aligned with the definition of causal effects.

3.3. A Probabilistic Generative Model for Causal­
VAE

We give a probabilistic formulation of the proposed gen-

erative model (shown in Fig. 2 2©). Denote by x ∈ R
d the

observed variables and u ∈ R
n the additional information.

ui is the label of the i-th concept of interest in data. Let

ǫ ∈ R
n be the latent exogenous independent variables and

z ∈ R
n be the latent endogenous variables with semantics

where z = A
T
z + ǫ = (I − A

T )−1ǫ. For simplicity, we

denote C = (I−A
T )−1.

We treat both z and ǫ as latent variables. Consider the

following conditional generative model parameterized by

θ = (f ,h,C,T,λ):

pθ(x, z, ǫ|u) = pθ(x|z, ǫ,u)pθ(ǫ, z|u). (3)

Let f(z) denote the decoder which is assumed to be an

invertible function and h(x,u) denotes the encoder. We

define the generative and inference models as follows:

pθ(x|z, ǫ,u) = pθ(x|z) ≡ pξ(x− f(z)),

qφ(z, ǫ|x,u) ≡ q(z|ǫ)qζ(ǫ− h(x,u)),
(4)

which is obtained by assuming the following decoding and

encoding processes:

x = f(z) + ξ, ǫ = h(x,u) + ζ, (5)

where ξ and ζ are the vectors of independent noise with prob-

ability densities pξ and qζ . When ξ and ζ are infinitesimal,

the encoder and decoder can be regarded as deterministic

ones. We define the joint prior pθ(ǫ, z|u) for latent variables

z and ǫ as

pθ(ǫ, z|u) = pǫ(ǫ)pθ(z|u), (6)

where pǫ(ǫ) = N (0, I) and the prior of latent endogenous

variables pθ(z|u) is a factorized Gaussian distribution con-

ditioning on the additional observation u, i.e.

pθ(z|u) = Πn
i pθ(zi|ui), pθ(zi|ui) = N (λ1(ui), λ

2
2(ui)),

(7)

9596



where λ1 and λ2 are an arbitrary functions. In this paper,

we let λ1(u) = u and λ2(u) ≡ 1. The distribution has

two sufficient statistics, the mean and variance of z, which

are denoted by sufficient statistics T(z) = (µ(z),σ(z)) =
(T1,1(z1), . . . , Tn,2(zn)). We use these notations for model

idnetifiability analysis in Section 5.

4. Learning Strategy

In this section, we discuss how to train the CausalVAE

model in order to learn the causal representation as well as

the causal graph simultaneously.

4.1. Evidence Lower Bound of CausalVAE

We apply variational Bayes to learn a tractable dis-

tribution qφ(ǫ, z|x,u) to approximate the true posterior

pθ(ǫ, z|x,u). Given data set X with the empirical data

distribution qX (x,u), the parameters θ and φ are learned by

optimizing the following evidence lower bound (ELBO):

EqX [log pθ(x|u)] ≥ ELBO = EqX [Eǫ,z∼qφ [log pθ(x|z, ǫ,u)]

−D(qφ(ǫ, z|x,u)||pθ(ǫ, z|u))],
(8)

where D(·‖·) denotes KL divergence. Eq. 8 is intractable in

general. However, thanks to the one-to-one correspondence

between ǫ and z, we simplify the variational posterior as

follows:

qφ(ǫ, z|x,u) = qφ(ǫ|x,u)δ(z = Cǫ)

= qφ(z|x,u)δ(ǫ = C
−1z), (9)

where δ(·) is the Dirac delta function. According to the

model assumptions introduced in Section 3.3, i.e., generation

process (Eq. 4) and prior (Eq. 6), we attain a neat form of

ELBO loss as follows:

Proposition 1 ELBO defined in Eq. 8 can be written as:

ELBO =EqX [Eqφ(z|x,u)[log pθ(x|z)]

−D(qφ(ǫ|x,u)||pǫ(ǫ))

−D(qφ(z|x,u)||pθ(z|u))]. (10)

Details of the proof are given in the Appendix A. With this

form, we can easily implement a loss function to train the

CausalVAE model.

4.2. Learning the Causal Structure of Latent Codes

In addition to the encoder and decoder, our CausalVAE

model involves a Causal Layer with a DAG structure to

be learned. Note that both z and A are unknown, to ease

the training task and guarantee the identifiability of causal

graph A, we leverage the additional labels u to construct the

following constraint:

lu = EqX ‖u− σ(AT
u)‖22 ≤ κ1, (11)

where σ is a logistic function as our labels are binary and κ1

is the small positive constant value. This follows the idea

that A should also describe the causal relations among labels

well. Similarly we apply the same constraint to the learned

latent code z as follows:

lm = Ez∼qφ

n∑

i=1

‖zi − gi(Ai ◦ z;ηi)‖
2 ≤ κ2, (12)

where κ2 is the small positive constant value. Lastly, the

causal adjacency matrix A is constrained to be a DAG. In-

stead of using traditional DAG constraint that is combinato-

rial, we adopt a continuous differentiable constraint function

[34, 35, 23, 32] . The function attains 0 if and only if the

adjacency matrix A corresponds to a DAG [32], i.e.

H(A) ≡ tr((I+
c

m
A ◦A)n)− n = 0, (13)

where c is an arbitrary positive number. The training pro-

cedure of our CausalVAE model reduces to the following

constrained optimization:

maximize ELBO,

s.t. (11)(12)(13).

By lagrangian multiplier method, we have the new loss func-

tion

L = −ELBO + αH(A) + βlu + γlm, (14)

where α, β, γ denote regularization hyperparameters.

5. Identifiability Analysis

In this section, we present the identifiability of our pro-

posed model. We adopt the ∼-identifiable [11] as follows:

Definition 1 Let ∼ be the binary relation on Θ defined as

follows:

(f ,h,C,T,λ) ∼ (f̃ , h̃, C̃, T̃, λ̃)

⇔ ∃B1,B2,b1,b2|

T(h(x,u)) = B1T̃(h̃(x,u)) + b1,T(f−1(x))

= B2T̃(f̃−1(x)) + b2, ∀x ∈ X ,

(15)

where C = (I−A
T )−1. If B1 is an invertible matrix and

B2 is an invertible diagonal matrix with diagonal elements

associated to ui. We say that the model parameter is ∼-

identifiable.

Following [11], we obtain the identifiability of our causal

generative model as follows.

Theorem 1 Assume that the data we observed are generated

according Eq. 3-4 and the following assumptions hold,
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1. The set {x ∈ X |φξ(x) = 0} has measure zero, where

φξ is the characteristic function of the density pξ de-

fined in Eq. 5.

2. The decoder function f is differentiable and the Jaco-

bian matrix of f is of full rank 1.

3. The sufficient statistics Ti,s(zi) 6= 0 almost everywhere

for all 1 ≤ i ≤ n and 1 ≤ s ≤ 2, where Ti,s(zi) is the

sth statistic of variable zi.

4. The additional observations ui 6= 0.

Then the parameters (f ,h,C,T,λ) are ∼-identifiable.

Although the parameters θ of true generative model are

unknown during the learning process, the identifiablity of

generative model given by Theorem 1 guarantees the parame-

ters θ̃ learned by hypothetical functions are in an identifiable

family. This shows that the learned parameters of the gener-

ative model recover the true one up to certain degree.

In addition, all zi in z align to the additional observation

of concept i and they are expected to inherent the causal

relationship of causal system. That is why that it could

guarantee that the z are causal representation.

The identifiability of the model under supervision of ad-

ditional information is obtained thanks to the conditional

prior pθ(z|u). The conditional prior guarantees that suffi-

cient statistics of pθ(z|u) are related to the value of u. A

complete proof of Theorem 1 is available in Appendix B.

6. Experiments

In this section, we conduct experiments using both syn-

thetic dataset and real human face image dataset and we

compare our CausalVAE model against existing state of the

art methods on disentangled representation learning. We

focus on examing whether a certain algorithm is able to

learn interpretable representations and whether outcomes

of intervention on learned latent code is consistent to our

understanding of the causal system.

6.1. Dataset, Baselines & Metrics

6.1.1 Datasets:

We conduct experiments on a synthetic datasets and a bench-

mark face dataset CelebA.

Synthetic: We build two synthetic datasets which include

images of causally related objects. The first one is named

Pendulum. Each image contains 3 entities (PENDULUM,

LIGHT, SHADOW), and 4 concepts ((PENDULUM AN-

GLE, LIGHT ANGLE) → (SHADOW LOCATION, SHADOW

LENGTH)). The second one is named Flow. Each image

contains 4 concepts (BALL SIZE → WATER SIZE, (WATER

1(rank equals to its smaller dimension)

SIZE, HOLE)→ WATER FLOW). Due to page limitation, main

text only shows the results on Pendulum, and experiments on

Flow and more details of two datasets are given in Appendix

C.1.

Real world benchmark: We also use a real world dataset

CelebA2[17], a widely used dataset in the computer vision

community. In this dataset, there are in total 200k human

face images with labels on different concepts, and we choose

two subsets of causally related attributes. The first set is

CelebA(SMILE), which consists of GENDER, SMILE, EYES

OPEN, MOUTH OPEN. The second one is CelebA(BEARD),

which consists of AGE, GENDER, BALD, BEARD. Main text

only shows results on CelebA(SMILE), and more experimen-

tal results on other concepts are provided in the Appendix

D.

Baselines: We compare our method with some state of

the arts and show the results of ablation study. Baselines are

categorized into supervised and unsupervised methods.

CausalVAE-unsup, LadderVAE [16] and β-VAE [6] are

unsupervised methods. CausalVAE-unsup is a reduced ver-

sion of our model whose structure is the same as CausalVAE

except that the Mask Layer and the supervision conditional

prior p(z|u) are removed.

Supervised methods include disentangled representation

learning method ConditionVAE [29], which does not include

causal layers in the model structure and causal generative

model CausalGAN [14], which needs the true causal graph

to be given as a prior.

As CausalGAN does not focus on representation learning,

we only compare our CausalVAE with CausalGAN on in-

tervention experiment (results given in Appendix D.3). For

these methods, the prior conditioning on the labels are given,

and the dimensionality of the latent representation is the

same as CausalVAE.

Metrics: We use Maximal Information Coefficient (MIC)

and Total Information Coefficient (TIC) [13] as our evalua-

tion metrics. Both of them indicate the degree of information

relevance between the learned representation and the ground

truth labels of concepts.

6.2. Intervention experiments

Intervention experiments aim at testing if a certain dimen-

sion of the latent representation has interpretable semantics.

The value of a latent code is manipulated by ”do-operation”

as introduced in previous sections, and we observe how the

generated image appears. Intervention is conducted by the

following steps:

• A generative model is trained.

• An arbitrary image from the training set is fed to the

encoder to generate a latent code z.

2http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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Figure 3. The results of Intervention experiments on the pendulum dataset. Each row shows the result of controlling the PENDULUM ANGLE,

LIGHT ANGLE, SHADOW LENGTH, and SHADOW LOCATION respectively. The bottom row is the original input image. More intervention

results on other synthetic dataset are shown in Appendix D.3.

Figure 4. Results of CausalVAE model on CelebA(SMILE). The controlled factors are GENDER, SMILE, EYES OPEN and MOUTH OPEN

respectively. More intervention results are shown in Appendix D.3.

• We manipulate the value of zi corresponding to a con-

cept of interest. For CausalVAE, as Fig. 2 4© and Fig. 6

show, we need to manipulate both the input and output

nodes of the SCM layer. Note that the effect of ma-

nipulation to a parental node will be propagated to its

children.

• The intervened latent code z̃ passes through the decoder

to generate a new image. In the experiments, all images

in the dataset are used to train our proposed model

CausalVAE and other baselines.

Hyperparameters (α, β, γ) = (1, 1, 1) for all experiments

unless specified.

We first conduct intervention experiments on the Pen-

dulum dataset, with 4 latent concepts and results are given

in Fig. 3. We intervene a certain concept by setting the

corresponding latent code value to 0. We expect that the

pattern of the manipulated concept will be fixed across all

images under the same intervention. For example, when we

intervene the pendulum ANGLE as shown in the first line

of Fig. 3 (a), the ANGLE of pendulum of different images

are almost the same. Meanwhile, we also observe that the

SHADOW LOCATION and SHADOW LENGTH change in a

correct way that aligns with the physics law. Note that this is

also related to the concept of modularity, meaning that inter-

vening a certain part of the generative system usually does

not affect the other parts of the system. Similar phenomenon

is observed in other intervention experiments, demonstrating

that our model correctly implements the underlying causal

system. The results of ConditionVAE, a supervised method

without considering the causal structure, are given in Fig.

3 (b). There exists a problem that manipulating the latent
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Figure 5. The learning process of causal matrix A. The concepts include: GENDER, SMILE, EYES OPEN, MOUTH OPEN (top-to-bottom

and left-to-right order); (c) converged A, (d) ground truth .

Table 1. The MIC and TIC between learned representation z and the label u. The results show that among all compared methods, the learned

factors of our proposed CausalVAE achieve best alignment to the concepts of interest. (Note: the metrics include mean ± standard errors in

table.)

CausalVAE ConditionVAE β-VAE CausalVAE-unsup LadderVAE

Metrics(%) MIC TIC MIC TIC MIC TIC MIC TIC MIC TIC

Pendulum 95.1 ±2.4 81.6 ±1.9 93.8 ±3.3 80.5 ±1.4 22.6 ±4.6 12.5 ±2.2 21.2 ±1.4 12.0 ±1.0 22.4 ±3.1 12.8 ±1.2

Flow 72.1 ±1.3 56.4 ±1.6 75.5 ±2.3 56.5 ±1.8 23.6 ±3.2 12.5 ±0.6 22.8 ±2.7 12.4 ±1.4 34.3 ±4.3 24.4 ±1.5

CelebA(SMILE) 83.7 ±6.2 71.6 ±7.2 78.8 ±10.9 66.1 ±12.1 22.5 ±1.2 9.92 ±1.2 27.2 ±5.3 14.6 ±4.2 23.5 ±3.0 10.3 ±1.6

CelebA(BEARD) 92.3 ±5.6 83.3 ±8.6 89.8 ±6.2 78.7 ±7.7 22.4 ±1.9 9.82±2.2 11.4 ±1.5 20.0±2.2 23.5 ±3.0 8.1±1.2

Intervene each concept

		𝑧# 	𝑧$ 	𝑧% 	𝑧&

		z# 		z$ 		z% 		𝑧&

After Mask Layer

Before Mask Layer

Figure 6. Intervention method

codes of effects sometimes has no influence to the whole im-

age. This is probably because they do not explicitly consider

causal disentanglement.

We also design another synthetic dataset Flow and do

the same comparative experiments on that and the results

support our claim. Because of page limitation, we show the

results in Appendix D.

Fig. 4 demonstrates the good result of CausalVAE on real

world banchmark dataset CelebA, with subfigures showing

the experiments on intervening concepts GENDER, SMILE,

EYES OPEN and MOUTH OPEN respectively. We observe

that when we intervene the cause concept SMILE, the sta-

tus of MOUTH OPEN also changes. In contrast, interven-

ing effect concept MOUTH OPEN does not cause the cause

concept SMILE to change. Table 1 records the mutual infor-

mation (MIC/TIC) between the learned representation and

the ground truth concept labels of all compared methods.

Our model achieves best alignment with the concept labels,

justifying the effectiveness of our proposed method. On the

contrary, factors learned by those compared methods have

low correlation with the ground truth labels, indicating that

those factors are at least not corresponding to the causal

concepts of interest.

In addition, we show in Fig. 5 the learned adjacency

matrix A. To learn a precise causal graph, we design a pre-

train process by optimizing augmented Lagrangian method

[32] on Eq. 11, details are shown in Appendix C.3. As the

training epoch increases, we see that the graph learned by our

model quickly converges to the true one, which shows that

our method is able to correctly learn the causal relationship

among the factors.

7. Conclusion

In this paper, we investigate an important task of learn-

ing disentangled representations of causally related concepts

in data, and propose a new framework called CausalVAE

which includes a SCM layer to model the causal generation

mechanism of data. We prove that the proposed model is

fully identifiability given additional supervision signal. Ex-

perimental results with synthetic and real data show that

CausalVAE successfully learns representations of causally

related concepts and allows intervention to generate counter-

factual outputs as expected according to our understanding

of the causal system. To the best of our knowledge, our

work is the first one that successfully implement causal dis-

entanglement and is expected to bring new insights into the

domain of disentangled representation learning.
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[1] Michel Besserve, Rémy Sun, and Bernhard Schölkopf. Coun-

terfactuals uncover the modular structure of deep generative

models. arXiv preprint arXiv:1812.03253, 2018. 3

[2] Philemon Brakel and Yoshua Bengio. Learning indepen-

dent features with adversarial nets for non-linear ica. arXiv

preprint arXiv:1710.05050, 2017. 2

[3] Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey,

Nick Watters, Guillaume Desjardins, and Alexander Lerchner.

Understanding disentangling in beta-vae. arXiv preprint

arXiv:1804.03599, 2018. 1

[4] Tian Qi Chen, Xuechen Li, Roger B Grosse, and David K

Duvenaud. Isolating sources of disentanglement in variational

autoencoders. In Advances in Neural Information Processing

Systems, pages 2610–2620, 2018. 1, 2

[5] David Heckerman, Dan Geiger, and David Maxwell Chick-

ering. Learning bayesian networks: The combination of

knowledge and statistical data. CoRR, abs/1302.6815, 2013.

3

[6] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess,

Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and

Alexander Lerchner. beta-vae: Learning basic visual concepts

with a constrained variational framework. Iclr, 2(5):6, 2017.

1, 2, 6

[7] Patrik O Hoyer, Dominik Janzing, Joris M Mooij, Jonas Pe-

ters, and Bernhard Schölkopf. Nonlinear causal discovery

with additive noise models. In Advances in neural information

processing systems, pages 689–696, 2009. 2

[8] Jun-Ting Hsieh, Bingbin Liu, De-An Huang, Li F Fei-Fei, and

Juan Carlos Niebles. Learning to decompose and disentangle

representations for video prediction. In Advances in Neural

Information Processing Systems, pages 517–526, 2018. 1

[9] Wei-Ning Hsu, Yu Zhang, and James Glass. Unsupervised

learning of disentangled and interpretable representations

from sequential data. In Advances in neural information

processing systems, pages 1878–1889, 2017. 1

[10] Nan Rosemary Ke, Olexa Bilaniuk, Anirudh Goyal, Ste-

fan Bauer, Hugo Larochelle, Chris Pal, and Yoshua Bengio.

Learning neural causal models from unknown interventions.

CoRR, abs/1910.01075, 2019. 3

[11] Ilyes Khemakhem, Diederik P. Kingma, and Aapo Hyvärinen.

Variational autoencoders and nonlinear ICA: A unifying

framework. CoRR, abs/1907.04809, 2019. 2, 4, 5

[12] Hyunjik Kim and Andriy Mnih. Disentangling by factorising.

arXiv preprint arXiv:1802.05983, 2018. 1

[13] Justin B Kinney and Gurinder S Atwal. Equitability, mutual

information, and the maximal information coefficient. Pro-

ceedings of the National Academy of Sciences, 111(9):3354–

3359, 2014. 6

[14] Murat Kocaoglu, Christopher Snyder, Alexandros G. Dimakis,

and Sriram Vishwanath. Causalgan: Learning causal im-

plicit generative models with adversarial training. CoRR,

abs/1709.02023, 2017. 2, 3, 6

[15] Tejas D Kulkarni, William F Whitney, Pushmeet Kohli, and

Josh Tenenbaum. Deep convolutional inverse graphics net-

work. In Advances in neural information processing systems,

pages 2539–2547, 2015. 2

[16] Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Is-

abelle Guyon, and Roman Garnett, editors. Advances in Neu-

ral Information Processing Systems 29: Annual Conference

on Neural Information Processing Systems 2016, December

5-10, 2016, Barcelona, Spain, 2016. 2, 6

[17] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.

Deep learning face attributes in the wild. In 2015 IEEE

International Conference on Computer Vision, ICCV 2015,

Santiago, Chile, December 7-13, 2015 [17], pages 3730–3738.

6, 9

[18] Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar
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