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Abstract

Domain adaptation is an important open prob-

lem in deep reinforcement learning (RL). In

many scenarios of interest data is hard to ob-

tain, so agents may learn a source policy in a

setting where data is readily available, with the

hope that it generalises well to the target do-

main. We propose a new multi-stage RL agent,

DARLA (DisentAngled Representation Learning

Agent), which learns to see before learning to act.

DARLA’s vision is based on learning a disen-

tangled representation of the observed environ-

ment. Once DARLA can see, it is able to acquire

source policies that are robust to many domain

shifts - even with no access to the target domain.

DARLA significantly outperforms conventional

baselines in zero-shot domain adaptation scenar-

ios, an effect that holds across a variety of RL en-

vironments (Jaco arm, DeepMind Lab) and base

RL algorithms (DQN, A3C and EC).

1. Introduction

Autonomous agents can learn how to maximise future

expected rewards by choosing how to act based on in-

coming sensory observations via reinforcement learning

(RL). Early RL approaches did not scale well to envi-

ronments with large state spaces and high-dimensional

raw observations (Sutton & Barto, 1998). A commonly

used workaround was to embed the observations in a

lower-dimensional space, typically via hand-crafted and/or

privileged-information features. Recently, the advent of

deep learning and its successful combination with RL has

enabled end-to-end learning of such embeddings directly

from raw inputs, sparking success in a wide variety of pre-

viously challenging RL domains (Mnih et al., 2015; 2016;

Jaderberg et al., 2017). Despite the seemingly universal

*

Equal contribution

1

DeepMind, 6 Pancras Square, Kings

Cross, London, N1C 4AG, UK. Correspondence to: Irina Higgins

<irinah@google.com>, Arka Pal <arkap@google.com>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017

by the author(s).

efficacy of deep RL, however, fundamental issues remain.

These include data inefficiency, the reactive nature and gen-

eral brittleness of learnt policies to changes in input data

distribution, and lack of model interpretability (Garnelo

et al., 2016; Lake et al., 2016). This paper focuses on one

of these outstanding issues: the ability of RL agents to deal

with changes to the input distribution, a form of transfer

learning known as domain adaptation (Bengio et al., 2013).

In domain adaptation scenarios, an agent trained on a par-

ticular input distribution with a specified reward structure

(termed the source domain) is placed in a setting where the

input distribution is modified but the reward structure re-

mains largely intact (the target domain). We aim to develop

an agent that can learn a robust policy using observations

and rewards obtained exclusively within the source domain.

Here, a policy is considered as robust if it generalises with

minimal drop in performance to the target domain without

extra fine-tuning.

Past attempts to build RL agents with strong domain adap-

tation performance highlighted the importance of learn-

ing good internal representations of raw observations (Finn

et al., 2015; Raffin et al., 2017; Pan & Yang, 2009; Bar-

reto et al., 2016; Littman et al., 2001). Typically, these ap-

proaches tried to align the source and target domain rep-

resentations by utilising observation and reward signals

from both domains (Tzeng et al., 2016; Daftry et al., 2016;

Parisotto et al., 2015; Guez et al., 2012; Talvitie & Singh,

2007; Niekum et al., 2013; Gupta et al., 2017; Finn et al.,

2017; Rajendran et al., 2017). In many scenarios, such as

robotics, this reliance on target domain information can be

problematic, as the data may be expensive or difficult to

obtain (Finn et al., 2017; Rusu et al., 2016). Furthermore,

the target domain may simply not be known in advance.

On the other hand, policies learnt exclusively on the source

domain using existing deep RL approaches that have few

constraints on the nature of the learnt representations of-

ten overfit to the source input distribution, resulting in poor

domain adaptation performance (Lake et al., 2016; Rusu

et al., 2016).

We propose tackling both of these issues by focusing in-

stead on learning representations which capture an underly-

ing low-dimensional factorised representation of the world

and are therefore not task or domain specific. Many nat-
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Figure 1. Schematic representation of DARLA. Yellow represents

the denoising autoencoder part of the model, blue represents the

�-VAE part of the model, and grey represents the policy learning

part of the model.

uralistic domains such as video game environments, sim-

ulations and our own world are well described in terms of

such a structure. Examples of such factors of variation are

object properties like colour, scale, or position; other exam-

ples correspond to general environmental factors, such as

geometry and lighting. We think of these factors as a set of

high-level parameters that can be used by a world graphics

engine to generate a particular natural visual scene (Kulka-

rni et al., 2015). Learning how to project raw observations

into such a factorised description of the world is addressed

by the large body of literature on disentangled representa-

tion learning (Schmidhuber, 1992; Desjardins et al., 2012;

Cohen & Welling, 2014; 2015; Kulkarni et al., 2015; Hin-

ton et al., 2011; Rippel & Adams, 2013; Reed et al., 2014;

Yang et al., 2015; Goroshin et al., 2015; Kulkarni et al.,

2015; Cheung et al., 2015; Whitney et al., 2016; Karalet-

sos et al., 2016; Chen et al., 2016; Higgins et al., 2017).

Disentangled representations are defined as interpretable,

factorised latent representations where either a single latent

or a group of latent units are sensitive to changes in single

ground truth factors of variation used to generate the vi-

sual world, while being invariant to changes in other factors

(Bengio et al., 2013). The theoretical utility of disentangled

representations for supervised and reinforcement learning

has been described before (Bengio et al., 2013; Higgins

et al., 2017; Ridgeway, 2016); however, to our knowledge,

it has not been empirically validated to date.

We demonstrate how disentangled representations can im-

prove the robustness of RL algorithms in domain adapta-

tion scenarios by introducing DARLA (DisentAngled Rep-

resentation Learning Agent), a new RL agent capable

of learning a robust policy on the source domain that

achieves significantly better out-of-the-box performance in

domain adaptation scenarios compared to various base-

lines. DARLA relies on learning a latent state representa-

tion that is shared between the source and target domains,

by learning a disentangled representation of the environ-

ment’s generative factors. Crucially, DARLA does not re-

quire target domain data to form its representations. Our

approach utilises a three stage pipeline: 1) learning to

see, 2) learning to act, 3) transfer. During the first stage,

DARLA develops its vision, learning to parse the world in

terms of basic visual concepts, such as objects, positions,

colours, etc. by utilising a stream of raw unlabelled obser-

vations – not unlike human babies in their first few months

of life (Leat et al., 2009; Candy et al., 2009). In the second

stage, the agent utilises this disentangled visual represen-

tation to learn a robust source policy. In stage three, we

demonstrate that the DARLA source policy is more robust

to domain shifts, leading to a significantly smaller drop in

performance in the target domain even when no further pol-

icy finetuning is allowed (median 270.3% improvement).

These effects hold consistently across a number of differ-

ent RL environments (DeepMind Lab and Jaco/MuJoCo:

Beattie et al., 2016; Todorov et al., 2012) and algorithms

(DQN, A3C and Episodic Control: Mnih et al., 2015; 2016;

Blundell et al., 2016).

2. Framework

2.1. Domain adaptation in Reinforcement Learning

We now formalise domain adaptation scenarios in a rein-

forcement learning (RL) setting. We denote the source

and target domains as DS and DT , respectively. Each

domain corresponds to an MDP defined as a tuple DS ⌘
(SS ,AS , TS , RS) or DT ⌘ (ST ,AT , TT , RT ) (we assume

a shared fixed discount factor �), each with its own state

space S , action space A, transition function T and reward

function R.

1

In domain adaptation scenarios the states S
of the source and the target domains can be quite different,

while the action spaces A are shared and the transitions T
and reward functions R have structural similarity. For ex-

ample, consider a domain adaptation scenario for the Jaco

robotic arm, where the MuJoCo (Todorov et al., 2012) sim-

ulation of the arm is the source domain, and the real world

setting is the target domain. The state spaces (raw pixels)

of the source and the target domains differ significantly due

to the perceptual-reality gap (Rusu et al., 2016); that is to

say, SS 6= ST . Both domains, however, share action spaces

(AS = AT ), since the policy learns to control the same set

of actuators within the arm. Finally, the source and tar-

get domain transition and reward functions share structural

similarity (TS ⇡ TT and RS ⇡ RT ), since in both domains

transitions between states are governed by the physics of

the world and the performance on the task depends on the

relative position of the arm’s end effectors (i.e. fingertips)

with respect to an object of interest.

2.2. DARLA

In order to describe our proposed DARLA framework, we

assume that there exists a set M of MDPs that is the set

1

For further background on the notation relating to the RL

paradigm, see Section A.1 in the Supplementary Materials.
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of all natural world MDPs, and each MDP Di is sampled

from M. We define M in terms of the state space

ˆS that

contains all possible conjunctions of high-level factors of

variation necessary to generate any naturalistic observation

in any Di 2 M. A natural world MDP Di is then one

whose state space S corresponds to some subset of

ˆS . In

simple terms, we assume that there exists some shared un-

derlying structure between the MDPs Di sampled from M.

We contend that this is a reasonable assumption that per-

mits inclusion of many interesting problems, including be-

ing able to characterise our own reality (Lake et al., 2016).

We now introduce notation for two state space variables

that may in principle be used interchangeably within the

source and target domain MDPs DS and DT – the agent

observation state space So
, and the agent’s internal latent

state space Sz
.

2 So
i in Di consists of raw (pixel) observa-

tions soi generated by the true world simulator from a sam-

pled set of data generative factors ŝi, i.e. soi ⇠ Sim(̂s

i

).

ŝi is sampled by some distribution or process Gi on

ˆS ,

ŝi ⇠ Gi(
ˆS).

Using the newly introduced notation, domain adaptation

scenarios can be described as having different sampling

processes GS and GT such that ŝS ⇠ GS(
ˆS) and ŝT ⇠

GT (
ˆS) for the source and target domains respectively, and

then using these to generate different agent observation

states soS ⇠ Sim(̂s

S

) and soT ⇠ Sim(̂s

T

). Intuitively, con-

sider a source domain where oranges appear in blue rooms

and apples appear in red rooms, and a target domain where

the object/room conjunctions are reversed and oranges ap-

pear in red rooms and apples appear in blue rooms. While

the true data generative factors of variation

ˆS remain the

same - room colour (blue or red) and object type (apples

and oranges) - the particular source and target distributions

GS and GT differ.

Typically deep RL agents (e.g. Mnih et al., 2015; 2016)

operating in an MDP Di 2 M learn an end-to-end map-

ping from raw (pixel) observations soi 2 So
i to actions

ai 2 Ai (either directly or via a value function Qi(s
o
i , ai)

from which actions can be derived). In the process of do-

ing so, the agent implicitly learns a function F : So
i ! Sz

i

that maps the typically high-dimensional raw observations

soi to typically low-dimensional latent states szi ; followed

by a policy function ⇡i : Sz
i ! Ai that maps the latent

states szi to actions ai 2 Ai. In the context of domain

adaptation, if the agent learns a naive latent state map-

ping function FS : So
S ! Sz

S on the source domain us-

ing reward signals to shape the representation learning, it

is likely that FS will overfit to the source domain and will

not generalise well to the target domain. Returning to our

2

Note that we do not assume these to be Markovian i.e. it is not

necessarily the case that p(so
t+1|sot ) = p(so

t+1|sot , sot�1, . . . , s
o

1),
and similarly for sz . Note the index t here corresponds to time.

intuitive example, imagine an agent that has learnt a pol-

icy to pick up oranges and avoid apples on the source do-

main. Such a source policy ⇡S is likely to be based on

an entangled latent state space Sz
S of object/room conjunc-

tions: oranges/blue ! good, apples/red ! bad, since this

is arguably the most efficient representation for maximis-

ing expected rewards on the source task in the absence of

extra supervision signals suggesting otherwise. A source

policy ⇡S(a|szS ; ✓) based on such an entangled latent rep-

resentation szS will not generalise well to the target domain

without further fine-tuning, since FS(s
o
S) 6= FS(s

o
T ) and

therefore crucially Sz
S 6= Sz

T .

On the other hand, since both ŝS ⇠ GS(
ˆS) and ŝT ⇠

GT (
ˆS) are sampled from the same natural world state

space

ˆS for the source and target domains respectively, it

should be possible to learn a latent state mapping function

ˆF : So ! Sz
Ŝ , which projects the agent observation state

space So
to a latent state space Sz

Ŝ expressed in terms of

factorised data generative factors that are representative of

the natural world i.e. Sz
Ŝ
⇡ ˆS. Consider again our intuitive

example, where

ˆF maps agent observations (soS : orange

in a blue room) to a factorised or disentangled representa-

tion expressed in terms of the data generative factors (szŜ :

room type = blue; object type = orange). Such a disen-
tangled latent state mapping function should then directly

generalise to both the source and the target domains, so that

ˆF(soS) =
ˆF(soT ) = szŜ . Since Sz

Ŝ is a disentangled repre-

sentation of object and room attributes, the source policy

⇡S can learn a decision boundary that ignores the irrele-

vant room attributes: oranges ! good, apples ! bad. Such

a policy would then generalise well to the target domain

out of the box, since ⇡S(a| ˆF(soS); ✓) = ⇡T (a| ˆF(soT ); ✓) =
⇡T (a|szŜ ; ✓). Hence, DARLA is based on the idea that a

good quality

ˆF learnt exclusively on the source domain

DS 2 M will zero-shot-generalise to all target domains

Di 2 M, and therefore the source policy ⇡(a|Sz
Ŝ ; ✓) will

also generalise to all target domains Di 2 M out of the

box.

Next we describe each of the stages of the DARLA pipeline

that allow it to learn source policies ⇡S that are robust to

domain adaptation scenarios, despite being trained with no

knowledge of the target domains (see Fig. 1 for a graphical

representation of these steps):

1) Learn to see (unsupervised learning of FU ) – the task

of inferring a factorised set of generative factors Sz
Ŝ =

ˆS
from observations So

is the goal of the extensive disentan-

gled factor learning literature (e.g. Chen et al., 2016; Hig-

gins et al., 2017). Hence, in stage one we learn a mapping

FU : So
U ! Sz

U , where Sz
U ⇡ Sz

Ŝ (U stands for ‘unsu-

pervised’) using an unsupervised model for learning dis-

entangled factors that utilises observations collected by an

agent with a random policy ⇡U from a visual pre-training

Max
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MDP DU 2 M. Note that we require sufficient variabil-

ity of factors and their conjunctions in DU in order to have

Sz
U ⇡ Sz

Ŝ ;

2) Learn to act (reinforcement learning of ⇡S in the source

domain DS utilising previously learned FU ) – an agent

that has learnt to see the world in stage one in terms of the

natural data generative factors is now exposed to a source

domain DS 2 M. The agent is tasked with learning the

source policy ⇡S(a|szS ; ✓), where szS = FU (s
o
S) ⇡ szŜ , via

a standard reinforcement learning algorithm. Crucially, we

do not allow FU to be modified (e.g. by gradient updates)

during this phase;

3) Transfer (to a target domain DT ) – in the final step, we

test how well the policy ⇡S learnt on the source domain

generalises to the target domain DT 2 M in a zero-shot

domain adaptation setting, i.e. the agent is evaluated on the

target domain without retraining. We compare the perfor-

mance of policies learnt with a disentangled latent state Sz
Ŝ

to various baselines where the latent state mapping func-

tion FU projects agent observations so to entangled latent

state representations sz .

2.3. Learning disentangled representations

In order to learn FU , DARLA utilises �-VAE (Higgins

et al., 2017), a state-of-the-art unsupervised model for au-

tomated discovery of factorised latent representations from

raw image data. �-VAE is a modification of the varia-

tional autoencoder framework (Kingma & Welling, 2014;

Rezende et al., 2014) that controls the nature of the learnt

latent representations by introducing an adjustable hyper-

parameter � to balance reconstruction accuracy with latent

channel capacity and independence constraints. It max-

imises the objective:

L(✓,�;x, z,�) =Eq�(z|x)[log p✓(x|z)]
� � DKL(q�(z|x)||p(z)) (1)

where �, ✓ parametrise the distributions of the encoder and

the decoder respectively. Well-chosen values of � - usually

larger than one (� > 1) - typically result in more disentan-

gled latent representations z by limiting the capacity of the

latent information channel, and hence encouraging a more

efficient factorised encoding through the increased pressure

to match the isotropic unit Gaussian prior p(z) (Higgins

et al., 2017).

2.3.1. PERCEPTUAL SIMILARITY LOSS

The cost of increasing � is that crucial information about

the scene may be discarded in the latent representation z,

particularly if that information takes up a small proportion

of the observations x in pixel space. We encountered this

issue in some of our tasks, as discussed in Section 3.1.

The shortcomings of calculating the log-likelihood term

Eq�(z|x)[log p✓(x|z)] on a per-pixel basis are known and

have been addressed in the past by calculating the recon-

struction cost in an abstract, high-level feature space given

by another neural network model, such as a GAN (Good-

fellow et al., 2014) or a pre-trained AlexNet (Krizhevsky

et al., 2012; Larsen et al., 2016; Dosovitskiy & Brox,

2016; Warde-Farley & Bengio, 2017). In practice we found

that pre-training a denoising autoencoder (Vincent et al.,

2010) on data from the visual pre-training MDP DU 2 M
worked best as the reconstruction targets for �-VAE to

match (see Fig. 1 for model architecture and Sec. A.3.1 in

Supplementary Materials for implementation details). The

new �-VAEDAE model was trained according to Eq. 2:

L(✓,�;x, z,�) =Eq�(z|x) kJ(ˆx)� J(x)k22
� � DKL(q�(z|x)||p(z)) (2)

where

ˆ

x ⇠ p✓(x|z) and J : RW⇥H⇥C ! RN
is the func-

tion that maps images from pixel space with dimensionality

W ⇥H ⇥ C to a high-level feature space with dimension-

ality N given by a stack of pre-trained DAE layers up to a

certain layer depth. Note that by replacing the pixel based

reconstruction loss in Eq. 1 with high-level feature recon-

struction loss in Eq. 2 we are no longer optimising the vari-

ational lower bound, and �-VAEDAE with � = 1 loses its

equivalence to the Variational Autoencoder (VAE) frame-

work as proposed by (Kingma & Welling, 2014; Rezende

et al., 2014). In this setting, the only way to interpret � is as

a mixing coefficient that balances the capacity of the latent

channel z of �-VAEDAE against the pressure to match the

high-level features within the pre-trained DAE.

2.4. Reinforcement Learning Algorithms

We used various RL algorithms (DQN, A3C and Episodic

Control: Mnih et al., 2015; 2016; Blundell et al., 2016) to

learn the source policy ⇡S
during stage two of the pipeline

using the latent states sz acquired by �-VAE based models

during stage one of the DARLA pipeline.

Deep Q Network (DQN) (Mnih et al., 2015) is a variant of

the Q-learning algorithm (Watkins, 1989) that utilises deep

learning. It uses a neural network to parametrise an ap-

proximation for the action-value function Q(s, a; ✓) using

parameters ✓.

Asynchronous Advantage Actor-Critic (A3C) (Mnih et al.,

2016) is an asynchronous implementation of the advantage

actor-critic paradigm (Sutton & Barto, 1998; Degris & Sut-

ton, 2012), where separate threads run in parallel and per-

form updates to shared parameters. The different threads

each hold their own instance of the environment and have

different exploration policies, thereby decorrelating param-

eter updates without the need for experience replay. There-

fore, A3C is an online algorithm, whereas DQN learns its

policy offline, resulting in different learning dynamics be-

Max

Max

Max

Max



DARLA: Improving Zero-Shot Transfer in Reinforcement Learning

tween the two algorithms.

Model-Free Episodic Control (EC) (Blundell et al., 2016)

was proposed as a complementary learning system to the

other RL algorithms described above. The EC algorithm

relies on near-determinism of state transitions and rewards

in RL environments; in settings where this holds, it can ex-

ploit these properties to memorise which action led to high

returns in similar situations in the past. Since in its simplest

form EC relies on a lookup table, it learns good policies

much faster than value-function-approximation based deep

RL algorithms like DQN trained via gradient descent - at

the cost of generality (i.e. potentially poor performance in

non-deterministic environments).

We also compared our approach to that of UNREAL (Jader-

berg et al., 2017), a recently proposed RL algorithm which

also attempts to utilise unsupervised data in the environ-

ment. The UNREAL agent takes as a base an LSTM A3C

agent (Mnih et al., 2016) and augments it with a number of

unsupervised auxiliary tasks that make use of the rich per-

ceptual data available to the agent besides the (sometimes

very sparse) extrinsic reward signals. This auxiliary learn-

ing tends to improve the representation learnt by the agent.

See Sec. A.6 in Supplementary Materials for further details

of the algorithms above.

3. Tasks

We evaluate the performance of DARLA on different task

and environment setups that probe subtly different aspects

of domain adaptation. As a reminder, in Sec. 2.2 we defined

ˆS as a state space that contains all possible conjunctions

of high-level factors of variation necessary to generate any

naturalistic observation in any Di 2 M. During domain

adaptation scenarios agent observation states are generated

according to soS ⇠ Sim

S

(̂s

S

) and soT ⇠ Sim

T

(̂s

T

) for the

source and target domains respectively, where ŝS and ŝT
are sampled by some distributions or processes GS and GT

according to ŝS ⇠ GS(
ˆS) and ŝT ⇠ GT (

ˆS).

We use DeepMind Lab (Beattie et al., 2016) to test a ver-

sion of domain adaptation setup where the source and target

domain observation simulators are equal (Sim

S

= Sim

T

),

but the processes used to sample ŝS and ŝT are differ-

ent (GS 6= GT ). We use the Jaco arm with a matching

MuJoCo simulation environment (Todorov et al., 2012) in

two domain adaptation scenarios: simulation to simula-

tion (sim2sim) and simulation to reality (sim2real). The

sim2sim domain adaptation setup is relatively similar to

DeepMind Lab i.e. the source and target domains differ

in terms of processes GS and GT . However, there is a sig-

nificant point of difference. In DeepMind Lab, all values of

factors in the target domain, ŝT , are previously seen in the

source domain; however, ŝS 6= ŝT as the conjunctions of

Figure 2. A: DeepMind Lab (Beattie et al., 2016) transfer task

setup. Different conjunctions of {room, object1, object2} were

used during different parts of the domain adaptation curriculum.

During stage one, D
U

(shown in yellow), we used a minimal set

spanning all objects and all rooms whereby each object is seen

in each room. Note there is no extrinsic reward signal or notion

of ‘task’ in this phase. During stage two, D
S

(shown in green),

the RL agents were taught to pick up cans and balloons and avoid

hats and cakes. The objects were always presented in pairs hat/can

and cake/balloon. The agent never saw the hat/can pair in the pink

room. This novel room/object conjunction was presented as the

target domain adaptation condition D
T

(shown in red) where the

ability of the agent to transfer knowledge of the objects’ value to

a novel environment was tested. B: �-VAE reconstructions (bot-

tom row) using frames from DeepMind Lab (top row). Due to

the increased � > 1 necessary to disentangle the data genera-

tive factors of variations the model lost information about objects.

See Fig. 3 for a model appropriately capturing objects. C: left –

sample frames from MuJoCo simulation environments used for

vision (phase 1, S
U

) and source policy training (phase 2, S
S

);

middle – sim2sim domain adaptation test (phase 3, S
T

); and right
– sim2real domain adaptation test (phase 3, S

T

).

these factor values are different. In sim2sim, by contrast,

novel factor values are experienced in the target domain

(this accordingly also leads to novel factor conjunctions).

Hence, DeepMind Lab may be considered to be assessing

domain interpolation performance, whereas sim2sim tests

domain extrapolation.

The sim2real setup, on the other hand, is based on identical

processes GS = GT , but different observation simulators

Sim

S

6= Sim

T

corresponding to the MuJoCo simulation

and the real world, which results in the so-called ‘percep-

tual reality gap’ (Rusu et al., 2016). More details of the

tasks are given below.

3.1. DeepMind Lab

DeepMind Lab is a first person 3D game environment with

rich visuals and realistic physics. We used a standard seek-

avoid object gathering setup, where a room is initialised

with an equal number of randomly placed objects of two

different types. One of the object varieties is ‘good’ (its col-

lection is rewarded +1), while the other is ‘bad’ (its collec-

tion is punished -1). The full state space

ˆS consisted of all

conjunctions of two room types (pink and green based on

the colour of the walls) and four object types (hat, can, cake

and balloon) (see Fig. 2A). The source domain DS con-

Max
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tained environments with hats/cans presented in the green

room, and balloons/cakes presented in either the green or

the pink room. The target domain DT contained hats/cans

presented in the pink room. In both domains cans and bal-

loons were the rewarded objects.

1) Learn to see: we used �-VAEDAE to learn the disen-

tangled latent state representation sz that includes both the

room and the object generative factors of variation within

DeepMind Lab. We had to use the high-level feature space

of a pre-trained DAE within the �-VAEDAE framework

(see Section 2.3.1), instead of the pixel space of vanilla �-

VAE , because we found that objects failed to reconstruct

when using the values of � necessary to disentangle the

generative factors of variation within DeepMind Lab (see

Fig. 2B).

�-VAEDAE was trained on observations soU collected by

an RL agent with a simple wall-avoiding policy ⇡U (oth-

erwise the training data was dominated by close up im-

ages of walls). In order to enable the model to learn

F(soU ) ⇡ ˆS , it is important to expose the agent to at least

a minimal set of environments that span the range of val-

ues for each factor, and where no extraneous correlations

are added between different factors

3

(see Fig. 2A, yellow).

See Section A.3.1 in Supplementary Materials for details

of �-VAEDAE training.

2) Learn to act: the agent was trained with the algo-

rithms detailed in Section 2.4 on a seek-avoid task us-

ing the source domain (DS) conjunctions of object/room

shown in Fig. 2A (green). Pre-trained �-VAEDAE from

stage one was used as the ‘vision’ part of various RL al-

gorithms (DQN, A3C and Episodic Control: Mnih et al.,

2015; 2016; Blundell et al., 2016) to learn a source policy

⇡S that picks up balloons and avoids cakes in both the green

and the pink rooms, and picks up cans and avoids hats in

the green rooms. See Section A.3.1 in Supplementary Ma-

terials for more details of the various versions of DARLA

we have tried, each based on a different base RL algorithm.

3) Transfer: we tested the ability of DARLA to transfer the

seek-avoid policy ⇡S it had learnt on the source domain in

stage two using the domain adaptation condition DT illus-

trated in Figure 2A (red). The agent had to continue picking

up cans and avoid hats in the pink room, even though these

objects had only been seen in the green room during source

policy training. The optimal policy ⇡T is one that maintains

the reward polarity from the source domain (cans are good

and hats are bad). For further details, see Appendix A.2.1.

3

In our setup of DeepMind Lab domain adaptation task, the

object and environment factors are supposed to be independent. In

order to ensure that �-VAE

DAE

learns a factorised representation

that reflects this ground truth independence, we present observa-

tions of all possible conjunctions of room and individual object

types.

3.2. Jaco Arm and MuJoCo

We used frames from an RGB camera facing a robotic

Jaco arm, or a matching rendered camera view from a

MuJoCo physics simulation environment (Todorov et al.,

2012) to investigate the performance of DARLA in two

domain adaptation scenarios: 1) simulation to simula-

tion (sim2sim), and 2) simulation to reality (sim2real).

The sim2real setup is of particular importance, since the

progress that deep RL has brought to control tasks in sim-

ulation (Schulman et al., 2015; Mnih et al., 2016; Levine

& Abbeel, 2014; Heess et al., 2015; Lillicrap et al., 2015;

Schulman et al., 2016) has not yet translated as well to re-

ality, despite various attempts (Tobin et al., 2017; Tzeng

et al., 2016; Daftry et al., 2016; Finn et al., 2015; Rusu

et al., 2016). Solving control problems in reality is hard due

to sparse reward signals, expensive data acquisition and the

attendant danger of breaking the robot (or its human min-

ders) during exploration.

In both sim2sim and sim2real, we trained the agent to per-

form an object reaching policy where the goal is to place

the end effector as close to the object as possible. While

conceptually the reaching task is simple, it is a hard control

problem since it requires correct inference of the arm and

object positions and velocities from raw visual inputs.

1) Learn to see: �-VAE was trained on observations col-

lected in MuJoCo simulations with the same factors of

variation as in DS . In order to enable the model to learn

F(soU ) ⇡ ŝ, a reaching policy was applied to phantom ob-

jects placed in random positions - therefore ensuring that

the agent learnt the independent nature of the arm position

and object position (see Fig. 2C, left);

2) Learn to act: a feedforward-A3C based agent with the

vision module pre-trained in stage one was taught a source

reaching policy ⇡S towards the real object in simulation

(see Fig. 2C (left) for an example frame, and Sec. A.4

in Supplementary Materials for a fuller description of the

agent). In the source domain DS the agent was trained on

a distribution of camera angles and positions. The colour

of the tabletop on which the arm rests and the object colour

were both sampled anew every episode.

3) Transfer: sim2sim: in the target domain, DT , the agent

was faced with a new distribution of camera angles and po-

sitions with little overlap with the source domain distribu-

tions, as well as a completely held out set of object colours

(see Fig. 2C, middle). sim2real: in the target domain DT

the camera position and angle as well as the tabletop colour

and object colour were sampled from the same distribu-

tions as seen in the source domain DS , but the target do-

main DT was now the real world. Many details present

in the real world such as shadows, specularity, multiple

light sources and so on are not modelled in the simulation;

Max

Max

Max
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Figure 3. Plot of traversals of various latents of an entangled and

a disentangled version of �-VAE

DAE

using frames from Deep-

Mind Lab (Beattie et al., 2016).
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Figure 4. Plot of traversals of �-VAE on MuJoCo. Using a disen-

tangled �-VAE model, single latents directly control for the fac-

tors responsible for the object or arm placements.

the physics engine is also not a perfect model of reality.

Thus sim2real tests the ability of the agent to cross the

perceptual-reality gap and generalise its source policy ⇡S

to the real world (see Fig. 2C, right). For further details,

see Appendix A.2.2.

4. Results

We evaluated the robustness of DARLA’s policy ⇡S learnt

on the source domain to various shifts in the input data dis-

tribution. In particular, we used domain adaptation sce-

narios based on the DeepMind Lab seek-avoid task and

the Jaco arm reaching task described in Sec. 3. On each

task we compared DARLA’s performance to that of var-

ious baselines. We evaluated the importance of learning

‘good’ vision during stage one of the pipeline, i.e one that

maps the input observations so to disentangled represen-

tations sz ⇡ ŝ. In order to do this, we ran the DARLA

pipeline with different vision models: the encoders of a

disentangled �-VAE

4

(the original DARLA), an entan-
gled �-VAE (DARLA

ENT

), and a denoising autoencoder

(DARLA

DAE

). Apart from the nature of the learnt rep-

resentations sz , DARLA and all versions of its baselines

were equivalent throughout the three stages of our pro-

posed pipeline in terms of architecture and the observed

data distribution (see Sec. A.3 in Supplementary Materials

for more details).

Figs. 3-4 display the degree of disentanglement learnt by

the vision modules of DARLA and DARLA

ENT

on Deep-

Mind Lab and MuJoCo. DARLA’s vision learnt to inde-

pendently represent environment variables (such as room

colour-scheme and geometry) and object-related variables

(change of object type, size, rotation) on DeepMind Lab

(Fig. 3, left). Disentangling was also evident in MuJoCo.

Fig. 4, left, shows that DARLA’s single latent units zi learnt

to represent different aspects of the Jaco arm, the object,

and the camera. By contrast, in the representations learnt

by DARLA

ENT

, each latent is responsible for changes to

both the environment and objects (Fig. 3, right) in Deep-

Mind Lab, or a mixture of camera, object and/or arm move-

ments (Fig. 4, right) in MuJoCo.

The table in Fig. 5 shows the average performance (across

different seeds) in terms of rewards per episode of the var-

ious agents on the target domain with no fine-tuning of the

source policy ⇡S . It can be seen that DARLA is able to

zero-shot-generalise significantly better than DARLA

ENT

or DARLA

DAE

, highlighting the importance of learning a

disentangled representation sz = szŜ during the unsuper-

vised stage one of the DARLA pipeline. In particular, this

also demonstrates that the improved domain transfer per-

formance is not simply a function of increased exposure to

training observations, as both DARLA

ENT

and DARLA

DAE

were exposed to the same data. The results are mostly con-

sistent across target domains and in most cases DARLA is

significantly better than the second-best-performing agent.

This holds in the sim2real task

5

, where being able to per-

form zero-shot policy transfer is highly valuable due to the

particular difficulties of gathering data in the real world.

DARLA’s performance is particularly surprising as it actu-

ally preserves less information about the raw observations

so than DARLA

ENT

and DARLA

DAE

. This is due to the

nature of the �-VAE and how it achieves disentangling; the

disentangled model utilised a significantly higher value of

the hyperparameter � than the entangled model (see Ap-

pendix A.3 for further details), which constrains the ca-

4

In this section of the paper, we use the term �-VAE to re-

fer to a standard �-VAE for the MuJoCo experiments, and a

�-VAE

DAE

for the DeepMind Lab experiments (as described in

stage 1 of Sec. 3.1).

5

See https://youtu.be/sZqrWFl0wQ4 for example sim2sim

and sim2real zero-shot transfer policies of DARLA and baseline

A3C agent.

Max
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Table 1. Transfer performance

DEEPMIND LAB JACO (A3C)
VISION TYPE DQN A3C EC SIM2SIM SIM2REAL

BASELINE AGENT 1.86 ± 3.91 5.32 ± 3.36 -0.41 ± 4.21 97.64 ± 9.02 94.56 ± 3.55
UNREAL - 4.13 ± 3.95 - - -
DARLAFT 13.36 ± 5.8 1.4 ± 2.16 - 86.59 ± 5.53 99.25 ± 2.3
DARLAENT 3.45 ± 4.47 15.66 ± 5.19 5.69 ± 3.73 84.77 ± 4.42 59.99 ± 15.05
DARLADAE 7.83 ± 4.47 6.74 ± 2.81 5.59 ± 3.37 85.15 ± 7.43 100.72 ± 4.7

DARLA 10.25 ± 5.46 19.7 ± 5.43 11.41 ± 3.52 100.85 ± 2.92 108.2 ± 5.97
DARLA’S PERFORMANCE IS SIGNIFICANTLY DIFFERENT FROM ALL BASELINES UNDER WELCH’S UNEQUAL VARIANCES T-TEST WITH p < 0.01 (N 2 [60, 150]).

Figure 5. Table: Zero-shot performance (avg. reward per episode) of the source policy ⇡
S

in target domains within DeepMind Lab and

Jaco/MuJoCo environments. Baseline agent refers to vanilla DQN/A3C/EC (DeepMind Lab) or A3C (Jaco) agents. See main text for

more detailed model descriptions. Figure: Correlation between zero-shot performance transfer performance on the DeepMind Lab task

obtained by EC based DARLA and the level of disentanglement as measured by the transfer/disentanglement score (r = 0.6, p < 0.001)

pacity of the latent channel. Indeed, DARLA’s �-VAE

only utilises 8 of its possible 32 Gaussian latents to store

observation-specific information for MuJoCo/Jaco (and 20

in DeepMind Lab), whereas DARLA

ENT

utilises all 32 for

both environments (as does DARLA

DAE

).

Furthermore, we examined what happens if DARLA’s vi-

sion (i.e. the encoder of the disentangled �-VAE ) is al-

lowed to be fine-tuned via gradient updates while learning

the source policy during stage two of the pipeline. This

is denoted by DARLA

FT

in the table in Fig. 5. We see

that it exhibits significantly worse performance than that

of DARLA in zero-shot domain adaptation using an A3C-

based agent in all tasks. This suggests that a favourable

initialisation does not make up for subsequent overfitting

to the source domain for the on-policy A3C. However, the

off-policy DQN-based fine-tuned agent performs very well.

We leave further investigation of this curious effect for fu-

ture work.

Finally, we compared the performance of DARLA to an

UNREAL (Jaderberg et al., 2017) agent with the same ar-

chitecture. Despite also exploiting the unsupervised data

available in the source domain, UNREAL performed worse

than baseline A3C on the DeepMind Lab domain adap-

tation task. This further demonstrates that use of unsu-

pervised data in itself is not a panacea for transfer per-

formance; it must be utilised in a careful and structured

manner conducive to learning disentangled latent states

sz = szŜ .

In order to quantitatively evaluate our hypothesis that dis-

entangled representations are essential for DARLA’s per-

formance in domain adaptation scenarios, we trained vari-

ous DARLAs with different degrees of learnt disentangle-

ment in sz by varying � (of �-VAE) during stage one of

the pipeline. We then calculated the correlation between

the performance of the EC-based DARLA on the Deep-

Mind Lab domain adaptation task and the transfer metric,

which approximately measures the quality of disentangle-

ment of DARLA’s latent representations sz (see Sec. A.5.2

in Supplementary Materials). This is shown in the chart in

Fig. 5; as can be seen, there is a strong positive correlation

between the level of disentanglement and DARLA’s zero-

shot domain transfer performance (r = 0.6, p < 0.001).

Having shown the robust utility of disentangled represen-

tations in agents for domain adaptation, we note that there

is evidence that they can provide an important additional

benefit. We found significantly improved speed of learning

of ⇡S on the source domain itself, as a function of how dis-

entangled the model was. The gain in data efficiency from

disentangled representations for source policy learning is

not the main focus of this paper so we leave it out of the

main text; however, we provide results and discussion in

Section A.7 in Supplementary Materials.

5. Conclusion

We have demonstrated the benefits of using disentangled

representations in a deep RL setting for domain adaptation.

In particular, we have proposed DARLA, a multi-stage RL

agent. DARLA first learns a visual system that encodes the

observations it receives from the environment as disentan-

gled representations, in a completely unsupervised manner.

It then uses these representations to learn a robust source

policy that is capable of zero-shot domain adaptation.

We have demonstrated the efficacy of this approach in a

range of domains and task setups: a 3D naturalistic first-

person environment (DeepMind Lab), a simulated graphics

and physics engine (MuJoCo), and crossing the simulation

to reality gap (MuJoCo to Jaco sim2real). We have also

shown that the effect of disentangling is consistent across

very different RL algorithms (DQN, A3C, EC), achieving

significant improvements over the baseline algorithms (me-

dian 2.7 times improvement in zero-shot transfer across

tasks and algorithms). To the best of our knowledge, this

is the first comprehensive empirical demonstration of the

strength of disentangled representations for domain adap-

tation in a deep RL setting.
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