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Abstract

(that is, zero expression measurements).

Single-cell RNA sequencing

Background: Single-cell RNA sequencing (scRNA-seq) is an emerging technology that can assess the function of an
individual cell and cell-to-cell variability at the single cell level in an unbiased manner. Dimensionality reduction is
an essential first step in downstream analysis of the scRNA-seq data. However, the scRNA-seq data are challenging
for traditional methods due to their high dimensional measurements as well as an abundance of dropout events

Results: To overcome these difficulties, we propose DR-A (Dimensionality Reduction with Adversarial variational
autoencoder), a data-driven approach to fulfill the task of dimensionality reduction. DR-A leverages a novel
adversarial variational autoencoder-based framework, a variant of generative adversarial networks. DR-A is well-
suited for unsupervised learning tasks for the scRNA-seq data, where labels for cell types are costly and often
impossible to acquire. Compared with existing methods, DR-A is able to provide a more accurate low dimensional
representation of the scRNA-seq data. We illustrate this by utilizing DR-A for clustering of scRNA-seq data.

Conclusions: Our results indicate that DR-A significantly enhances clustering performance over state-of-the-art methods.

Keywords: Adversarial autoencoder, Variational autoencoder, Dimensionality reduction, Generative adversarial networks,

Background

Dimensionality reduction is a universal preliminary step
prior to downstream analysis of scRNA-seq data such as
clustering and cell type identification [1]. Dimension re-
duction is crucial for analysis of scRNA-seq data because
the high dimensional scRNA-seq measurements for a
large number of genes and cells may contain high level
of technical and biological noise [2]. Its objective is to
project data points from the high dimensional gene
expression measurements to a low dimensional latent
space so that the data become more tractable and noise
can be reduced. In particular, a special characteristic of
scRNA-seq data is that it contains an abundance of zero
expression measurements that could be either due to
biological or technical causes. This phenomenon of zero
measurements due to technical reasons is often referred
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to as “dropout” events where an expressed RNA molecule
is not detected. The identification of distinct cellular states
or subtypes is a key application of scRNA-seq data. How-
ever, some methods may not work well because of the
existence of dropout events.

The most commonly used method is principal compo-
nent analysis (PCA), which transforms the observations
onto the latent space by defining linear combinations of the
original data points with successively largest variance (that
is, principal components) [3]. However, PCA is under the
assumptions of linear dimensions and approximately
normally distributed data, which may not be suitable for
scRNA-seq data [4]. Another linear technique is factor
analysis, which is similar to PCA but aims to model correla-
tions instead of covariances by describing variability among
correlated variables [5]. Based on the factor analysis frame-
work, a recent state-of-the-art method, Zero-Inflated Factor
Analysis (ZIFA), accounts for the presence of dropouts by
adding a zero-inflation modulation layer [6]. A limitation of
ZIFA, however, is that the zero-inflation model may not be
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proper for all datasets [4]. Recently, deep learning frame-
works, such as Single-cell Variational Inference (scVI) [7]
and Sparse Autoencoder for Unsupervised Clustering,
Imputation, and Embedding (SAUCIE) [8], utilizes the
autoencoder which processes the data through narrower
and narrower hidden layers and gradually reduces the di-
mensionality of the data. It should be noted that scVI and
SAUCIE take advantage of parallel and scalable features in
deep neural networks [7, 8].

Visualization of high dimensional data is an important
problem in scRNA-seq data analysis since it allows us to
extract useful information such as distinct cell types. In
order to facilitate the process of visualization, dimensional-
ity reduction is normally utilized to reduce the dimension
of the data, from tens-of-thousands (that is, the number of
genes) to 2 or 3 [2]. T-distributed stochastic neighbor
embedding (t-SNE) is a popular method for visualizing
scRNA-seq data [9-11], but not recommended as a dimen-
sionality reduction method due to its weaknesses such as
curse of intrinsic dimensionality and the infeasibility of
handling general dimensionality reduction tasks for a di-
mensionality higher than three [12]. On the other hand, a
recently-developed nonlinear technique called Uniform
Manifold Approximation and Projection (UMAP) [13] is
claimed to improve visualization of scRNAseq data com-
pared with t-SNE [14].

Generative Adversarial Networks (GANs) [15] are an
emerging technique that has attracted much attention in
machine learning research because of its massive poten-
tial to sample from the true underlying data distribution
in a wide variety of applications, such as videos, images,
languages, and other fields [16-18]. The GAN frame-
work consists of two components including a generative
model G and a discriminative model D [15]. In practice,
these two neural networks, G and D, are trained simul-
taneously. The generative model G is trained to generate
fake samples from the latent variable z, while the dis-
criminative model D inputs both real and fake samples
and distinguishes whether its input is real or not. The
discriminative model D estimates higher probability if it
considers a sample is more likely to be real. In the
meantime, G is trained to maximize the probability of D
making a wrong decision. Concurrently, both G and D
play against each other to accomplish their objectives
such that the GAN framework creates a min-max adver-
sarial game between G and D.

Recently, a variant of the GAN framework called an
Adversarial AutoEncoder [19] was proposed to be a prob-
abilistic autoencoder that leverages the GAN concept to
transform an autoencoder into a GAN-based structure.
The architecture of an Adversarial AutoEncoder is com-
posed of two components, a standard autoencoder and a
GAN network. The encoder in an Adversarial AutoEncoder
is also the generative model of the GAN network. The
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GAN-based training ensures that the latent space conforms
to some prior latent distribution. The Adversarial AutoEn-
coder models have been applied to identify and generate
new compounds for anticancer therapy by using biological
and chemical data [20, 21].

The main contributions of this work are as follows: In
this work, we propose a novel GAN-based architecture,
which we refer to as DR-A (Dimensionality Reduction
with Adversarial variational autoencoder), for dimen-
sionality reduction in scRNA-seq analysis. We directly
compare the performance of DR-A to dimensionality
reduction methods implemented in widely used soft-
ware, including the PCA, ZIFA, scVI, SAUCIE, t-SNE,
and UMAP. Across several scRNA-seq datasets, we
demonstrate that our DR-A approach leads to better
clustering performance.

Results

Overview of DR-A

DR-A represents a deep adversarial variational autoencoder-
based framework, which combines the concepts of two deep
learning models including Adversarial AutoEncoder [19]
and Variational AutoEncoder [22] (see Methods). Figure 1
provides an overview of the model structure in DR-A, which
models scRNA-seq data through a zero-inflated negative
binomial (ZINB) distribution structure [7, 23] in a GAN
framework. DR-A is a novel structure of an Adversarial
Variational AutoEncoder with Dual Matching (AVAE-DM),
where both the generator and discriminator examine the
input scRNA-seq data. As shown in Fig. 1, an additional dis-
criminator D2 tries to differentiate between real scRNA-seq
data and the reconstructed scRNA-seq data from the
decoder. While DR-A manages to match the latent space
distribution with a selected prior, it concurrently tries to
match the distribution of the reconstructed samples with
that of the underlying real scRNA-seq data. This approach
refers to dual distribution matching.

In accordance with the Wasserstein distance-based scheme
[24], DR-A further integrates the AVAE-DM structure with
the Bhattacharyya distance [25]. The Bhattacharyya distance
BD(p, q) is an alternative metric to measure the similarity
between two probability distributions, p and ¢ distributions,
over the same domain X. The Bhattacharyya distance is
defined as

BD(p,q) = - In (Z \/p(x)*q(x)>

Therefore, our new Bhattacharyya distance-based scheme
can be formalized as the following minimax objective:

rréin max BD (Exmpdm [D(x)], E.p(z) [D(G(Z))])
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Fig. 1 The novel architecture of an Adversarial Variational AutoEncoder with Dual Matching (AVAE-DM). An autoencoder (that is, a deep encoder
and a deep decoder) reconstructs the scRNA-seq data from a latent code vector z The first discriminator network D7 is trained to discriminatively
predict whether a sample arises from a sampled distribution or from the latent distribution of the autoencoder. The second discriminator D2 is
trained to discriminatively predict whether the scRNA-seq data is real or fake

where pgaa and p(z) are the data distribution and the
model distribution, respectively.

In summary, DR-A has the following five key advan-
tages: (1) DR-A matches the distribution of the recon-
structed samples with the underlying real scRNA-seq
data. (2) DR-A matches the latent space distribution with
a chosen prior. (3) DR-A provides a ZINB distribution,
which is a commonly-accepted distributional structure for
gene expression. (4) DR-A is more stable for GAN train-
ing with the Bhattacharyya distance-based scheme. (5)
DR-A accounts for parallel and scalable features in a deep
neural network framework (see Methods).

Real data analysis

To evaluate the performance of our approach for dimen-
sion reduction, we compared our DR-A framework with
other state-of-the-art methods, including the PCA (3],
ZIFA [6], scVI [7], SAUCIE [8], t-SNE [12], and UMAP
[13]. The dimensionality reduction was studied in 2
latent dimensions (K =2), 10 latent dimensions (K = 10),
and 20 latent dimensions (K = 20) for these methods.

In these experiments, we employed five datasets
(Table 1), including the Zeisel-3k [1], Macoskco-44 k
[10], Zheng-68 k [26], Zheng-73 k [26], and Rosenberg-
156 k [27] datasets as described in the Methods section,
where the cell types with ground truth are available.

We evaluated the effectiveness of these methods with
impacts on the clustering performance of the K-means
clustering algorithm with the latent dimensions of K =2,
10, and 20. We assessed the clustering performance
using the normalized mutual information (NMI) scores
[28]. First, we applied the K-means clustering algorithm
using the latent variables from the various algorithms of
dimensionality reduction as an input and generated the
predicted clustering labels. Then, we utilized NMI scores
to measure the cluster purity between the predicted
clustering labels and the cell types with ground truth in
a given dataset. Based on the NMI scores, we compared
our DR-A framework with other algorithms of dimen-
sionality reduction (including the PCA, ZIFA, scVI,
SAUCIE, t-SNE, and UMAP methods).

As shown in Table 2, our DR-A framework performed
maximally or comparably in all cases. The best NMI

Table 1 Summary of scRNA-seq datasets employed in this study. There were 720 highest variance genes selected in each dataset

for subsequent experiments

Dataset Number of cells Number of cell types Reference

Zeisel-3 k 3005 7 Zeisel et al. [1]
Macoskco-44 k 44,808 39 Macosko et al. [10]
Zheng-68 k 68,579 10 Zheng et al. [26]
Zheng-73 k 73233 8 Zheng et al. [26]
Rosenberg-156 k 156,049 73 Rosenberg et al. [27]
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Table 2 Details of experimental results based on NMI scores for various dimension reduction algorithms, including the DR-A, PCA,
ZIFA, scVI, SAUCIE, t-SNE, and UMAP methods. We carried out the experiments using the Rosenberg-156 k, Zheng-73 k, Zheng-68 k,
Macosko-44 k, and Zeisel-3 k datasets. These dimension reduction algorithms were investigated with (a) 2 latent dimensions (K= 2),
(b) 10 latent dimensions (K= 10), and (c) 20 latent dimensions (K= 20)

Algorithm Rosenberg-156 k Zheng-73 k Zheng-68 k Macosko-44 k Zeisel-3k
(a) K=2
DR-A 0.5573 0.8457 0.5931 0.4936 0.7263
PCA 02523 0.3396 0.2538 0.2984 04721
ZIFA 0.3049 03794 02810 03120 04250
sVl 05199 0.8261 0.5417 04599 0.7006
SAUCIE 04046 04304 0.2749 0.2707 04622
t-SNE 04343 0.6562 04081 04091 0.7103
UMAP 0.5591 0.6507 04377 04184 0.7214
(b) K=10
DR-A 0.5850 0.8503 0.5756 0.5156 0.7893
PCA 03276 05612 0.3877 04243 0.5559
ZIFA 05074 0.8354 0.5152 04785 0.7807
scVl 0.5821 0.8060 0.5571 05155 0.7606
SAUCIE 04773 04209 03147 0.2874 05110
t-SNE N/A N/A N/A N/A N/A
UMAP 05735 0.6911 04393 04129 0.7413
() K=20
DR-A 0.5842 0.8002 0.5888 0.5176 0.7639
PCA 03761 0.5623 03874 04306 0.5561
ZIFA N/A N/A N/A N/A 07114
sVl 0.5831 0.7976 0.5691 05105 0.7419
SAUCIE 04740 04254 0.2952 02775 04808
t-SNE N/A N/A N/A N/A N/A
UMAP 0.5656 0.6906 04413 04177 0.7419

N/A denotes that we could not run the given algorithm

scores (with 10 and 20 latent dimensions) for the five
datasets were all based on the DR-A method (Table 2(b),
K =10; Table 2(c), K=20). With 2 latent dimensions,
the UMAP method performed marginally better than
the DR-A method using the Rosenberg-156 k dataset
(Table 2(a), K=2). In addition, the best NMI scores
(with 2 latent dimensions) for the Zheng-73 k, Zheng-68
k, Macosko-44 k, and Zeisel-3 k datasets were all based
on the DR-A method (Table 2(a), K = 2).

Furthermore, we compared our DR-A framework with
other variants of the GAN framework, including the
AVAE-DM structure with the Wasserstein distance and
AVAE structure. Our DR-A framework adopts the
AVAE-DM structure with Bhattacharyya distance. The
DR-A method improved the performance compared to
the AVAE-DM with the Wasserstein distance and AVAE
methods (Additional file 1: Table S1), indicating the ad-
vantage of the Bhattacharyya distance and dual matching
architecture. In addition, the experimental results of the

DR-A method with various batch sizes were shown in
Additional file 1: Table S2.

Our analysis indicated that our DR-A framework is
well-suited for large-scale scRNA-seq datasets. The
hyperparameters for various datasets of DR-A were
shown in Table 3.

Data visualization

Moreover, we performed two-dimensional (2-D)
visualization of the clustering results for the DR-A, PCA,
ZIFA, scVI, SAUCIE, t-SNE, and UMAP methods using
the Zeisel-3 k (Fig. 2), Zheng-73 k (Fig. 3), Macoskco-44 k
(Additional file 1: Figure S1), Zheng-68 k (Additional file 1:
Figure S2), and Rosenberg-156 k (Additional file 1: Figure
S3) datasets, respectively. We also carried out the two-step
approach of combining DR-A with t-SNE (see Methods).
We illustrated the 2-D plots on the Macoskco-44 k
(Additional file 1: Figure S1) and Rosenberg-156k
datasets (Additional file 1: Figure S3) only by using
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Table 3 Details of hyperparameters for DR-A based on the experimental results in Table 2. We carried out the experiments using
the Rosenberg-156 k, Zheng-73 k, Zheng-68 k, Macosko-44 k, and Zeisel-3 k datasets. The DR-A algorithm was investigated with (a) 2
latent dimensions (K= 2), (b) 10 latent dimensions (K= 10), and (c) 20 latent dimensions (K= 20). G denotes a generative model and

D denotes a discriminative model

Dataset Batch size Hidden layer Hidden unit Learning rate
(a) K=2
Rosenberg-156 k 128 4 G: 1024/512/512/256 7x107°
D: 32/16/16/8
Zheng-73 k 128 3 G: 512/512/512 6x107°
D: 32/32/32
Zheng-68 k 128 4 G: 256/256/256/256 0.0001
D: 32/32/16/16
Macosko-44 k 128 3 G: 256/128/64 0.0001
D: 64/64/64
Zeisel-3k 128 4 G: 512/512/512/512 8x107*
D: 32/32/32/32
(b) K=10
Rosenberg-156 k 128 4 G: 512/256/128/64 6x107°
D: 256/128/64/32
Zheng-73 k 128 4 G: 1024/512/512/256 2x107°
D: 32/32/32/32
Zheng-68 k 128 4 G: 256/256/256/256 7%107°
D: 32/32/16/16
Macosko-44 k 128 4 G: 512/256/256/128 7x107°
D: 256/128/128/64
Zeisel-3 k 128 1 G512 7x107*
D: 512
(0 K=20
Rosenberg-156 k 128 4 G: 1024/1024/1024/1024 6x107°
D: 64/64/64/64
Zheng-73 k 128 4 G: 1024/512/512/256 1x107°
D: 64/32/32/16
Zheng-68 k 128 1 G: 256 2%107°
D: 256
Macosko-44 k 128 1 G: 256 7x107
D: 256
Zeisel-3 k 128 1 G512 7x107"
D: 512

the top ten cell types in terms of the number of cells.
Due to the large number of distinct cell types for the
Macoskco-44 k and Rosenberg-156 k datasets (39 and
73, respectively), it may not be obvious to distinguish
in 2-D visualization by using all cell types.

Discussion

In this work, we specifically addressed the problem of
the identification of distinct cellular subtypes in terms of
dimensionality reduction in scRNA-seq data. We devel-
oped a conceptually different class of the GAN frame-
work, DR-A, which is an AVAE-DM-based method for
robust estimation of cell types and is applicable to large-
scale scRNA-seq datasets. We further demonstrated the
utility of DR-A in an application to five real scRNA-seq
datasets assuming 2, 10, and 20 latent dimensions. We

also compared the performance of DR-A to state-of-the-
art methods and intriguingly showed the improvement
offered by DR-A over widely used approaches, including
PCA, ZIFA, scVI, SAUCIE, t-SNE, and UMAP.

Furthermore, our experiments demonstrated that our
DR-A framework, which is based on the AVAE-DM
model with the Bhattacharyya distance, is a promising
novel approach. All in all, our DR-A method had a bet-
ter performance than state-of-the-art methods for all five
datasets, indicating that DR-A is scalable for large-scale
scRNA-seq datasets.

Although the t-SNE method is a wide-used approach
for data visualization of scRNA-seq data, it has been
suggested that t-SNE may not be feasible for dimension-
ality reduction [12]. In line with this finding in the previ-
ous study, the clustering performances of t-SNE in some
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Fig. 2 2-D visualization for the Zeisel-3 k dataset. The Zeisel-3 k dataset was reduced to 2-D by using (a) DR-A, (b) PCA, (c) ZIFA, (d) scVI, (e)
SAUCIE, (f) t-SNE, (g) UMAP, and (h) DR-A combined with t-SNE methods. Each point in the 2-D plot represents a cell in the testing set of the
Zeisel dataset, which have 7 distinct cell types. There was an 80% training and 20% testing split from the original dataset in these experiments

datasets were worse than those of other algorithms such
as scVI and DR-A in this study (Table 2). To overcome
this weakness, some studies [10] utilized a technique of
using t-SNE for data visualization after performing other
dimensionality reduction methods. In accordance with
this technique, we adapted the two-step approach of
using DR-A with t-SNE. Interestingly, we found that the
two-step approach combines the advantages of both DR-
A and t-SNE methods and had an improved result that
cells from relevant cell types appeared to be adjacent to
each other, for example, as shown in Fig. 2 (a), (f), and
(h) for the Zeisel-3 k dataset. Likewise, the improvement
for data visualization is presented for other four datasets
(Fig. 3, Additional file 1: Figure S1, Additional file 1:
Figure S2, and Additional file 1: Figure S3). Therefore,
our results demonstrate that DR-A is an effective 2-D
visualization tool for scRNA-seq data.

Conclusions

In summary, we developed DR-A, a novel AVAE-DM-
based framework, for scRNA-seq data analysis and appli-
cations in dimension reduction and clustering. Compared
systematically with other state-of-the-art methods, DR-A
achieves higher cluster purity for clustering tasks and is
generally suitable for different scale and diversity of

scRNA-seq datasets. We anticipate that scalable tools such
as DR-A will be a complementary approach to existing
methods and will be in great demand due to an ever-
increased need for handling large-scale scRNA-seq data.
In future work, we will verify if DR-A could also be benefi-
cial for other forms of downstream analysis, such as
lineage estimation.

Methods

Generative adversarial networks

The idea of GANSs is to train two neural networks (the
generator G and the discriminator D) concurrently to es-
tablish a min-max adversarial game between them. The
generator G(z) gradually learns to transform samples z
from a prior distribution p(z) into the data space, while
the discriminator D(x) is trained to distinguish a point x
in the data space between the data points sampled from
the actual data distribution (that is, true samples) and
the data points produced by the generator (that is, fake
samples). It is assumed that G(z) is trained to fully con-
fuse the discriminator with its generated samples by
using the gradient of D(x) with respect to x to modify its
parameters. This scheme can be formalized as the fol-
lowing type of minimax objective [15]:
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Fig. 3 2-D visualization for the Zheng-73 k dataset. The Zheng-73 k dataset was reduced to 2-D by using (a) DR-A, (b) PCA, (c) ZIFA, (d) scVI, (e)
SAUCIE, () t-SNE, (g) UMAP, and (h) DR-A combined with t-SNE methods. Each point in the 2-D plot represents a cell in the testing set of the Zheng-
73 k dataset, which have 8 distinct cell types. There was an 80% training and 20% testing split from the original dataset in these experiments

min max Ec.p,, [ 10gD(x)] + E..p [ log(1-D(G(2)))]

where pg.i. is the data distribution and p(z) is the model
distribution.

The generator G and the discriminator D can be both
modeled as fully connected neural networks and then are
trained by backpropagation using a suitable optimizer. In
our experiments, we used adaptive moment estimation
(Adam) [29], which is an extension to stochastic gradient
descent.

Adversarial AutoEncoder

A variant of GAN models called an Adversarial AutoEnco-
der [19] is a probabilistic autoencoder that transforms an
autoencoder into a generative model by using the GAN
framework. The structure of an Adversarial AutoEncoder is
composed of two components, a standard autoencoder and
an adversarial network. The encoder is also the generator
of the adversarial network. The idea of the Adversarial
AutoEncoder is that both the adversarial network and the
autoencoder are trained simultaneously to perform infer-
ence. While the encoder (that is, the generator) is trained
to fool the discriminator to believe that the latent vector is
generated from the true prior distribution, the discrimin-
ator is trained to distinguish between the sampled vector

and the latent vector of the encoder at the same time. The
adversarial training ensures that the latent space matches
with some prior latent distribution.

Variational AutoEncoder

A variant of autoencoder models called Variational
Autoencoder [22] is a generative model, which estimates
the probability density function of the training data. An
input x is run through an encoder, which generates pa-
rameters of a distribution Q(z | x). Then, a latent vector
z is sampled from Q(z | x). Finally, the decoder decodes
z into an output, which should be similar to the input.
This scheme can be trained by maximizing the following
objective with gradient-based methods:

EZNQ(Z\JC) Iogpmodel(x | Z)_DKL(Q(Z |x) "pmode[(z))

where Dy; is the Kullback-Leibler divergence, and p,,,,.
aellx | z) is viewed as the decoder.

Adversarial Variational AutoEncoder

Figure 4 shows the structure of an Adversarial Vari-
ational AutoEncoder (AVAE), which adopts the struc-
tures of Adversarial Autoencoder [19] and Variational
Autoencoder [22]. Let x be the input of the scRNA-seq
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Fig. 4 The overall architecture of an Adversarial Variational AutoEncoder (AVAE) framework. An autoencoder (that is, a deep encoder and a deep
decoder) reconstructs the scRNA-seq data from a latent code vector z. A discriminator network is trained to discriminatively predict whether a
sample arises from a prior distribution or from the latent code distribution of the autoencoder

expression level (M cells x N genes) and z be the latent
code vector of an autoencoder, which consists of a deep
encoder and a deep decoder. Let p(z) be the prior distri-
bution imposed on the latent code vector, g(z|x) be an
encoding distribution and p(x|z) be the decoding distri-
bution. The deep encoder provides the mean and covari-
ance of Gaussian for the variational distribution g(z|x)
[22]. The autoencoder gradually learns to reconstruct
the input x of the scRNA-seq data to be as realistic as
possible by minimizing the reconstruction error. Note
that the encoder of the AVAE is also the generator of
the GAN framework. The encoder is trained to fool the
discriminator of the GAN framework such that the la-
tent code vector g(z) stems from the true prior distribu-
tion p(z). Meanwhile, the discriminator is trained to
distinguish between the sampled vector of p(z) and the
latent code vector ¢(z) of the encoder (that is, the gener-
ator) at the same time. Thus, the GAN framework
guides ¢(z) to match p(z). Eventually, AVAE is able to
learn an unsupervised representation of the probability
distribution of the scRNA-seq data. In our work, we
used the normal Gaussian distribution N(0, I) for the
prior distribution p(z). In addition, the generator was up-
dated twice for each discriminator update in this work.
Note that in the training phase, labels for cell types are
not provided and the entire framework is unsupervised.

Adversarial Variational AutoEncoder with dual matching
(AVAE-DM)

In this paper, we explore AVAEs in a different structure
by altering the network architecture of an AVAE (Fig. 4).
Figure 1 shows the novel structure of an Adversarial Vari-
ational AutoEncoder with Dual Matching (AVAE-DM)
employed in this work. Unlike a conventional AVAE, both

the generator and discriminator observe the input scRNA-
seq data in an AVAE-DM. In additional to the original
AVAE structure (Fig. 4), we add another discriminator D2
that attempts to distinguish between real scRNA-seq data
and the decoder’s output (that is, the reconstructed
scRNA-seq data). As in the original AVAE structure, the
goal of this AVAE-DM architecture remains the same in
the unsupervised setting (that is, labels for cell types are
not provided during training). This architecture ensures
that the distribution of the reconstructed samples match
that of the underlying real scRNA-seq. At the same time,
the latent space distribution is matched with a chosen
prior, leading to dual distribution matching.

Since the Wasserstein distance have been shown to be
more stable for GAN training, the AVAE-DM can be
combined with the Wasserstein distance [30]. The
AVAE-DM can also be explored with the Wasserstein
distance with gradient penalty (GP) [24]. Wasserstein
distance W(p, ¢), also known as the earth mover’s
distance, is informally defined as the minimum cost of
transiting mass between the probability distribution p
and the probability distribution g. The Wasserstein
distance-based scheme can be formalized as the follow-
ing minimax objective [24]:

rrcl;in max E Py [D(%)]=Ep(2)[D(G(2))]

Furthermore, we proposed to integrate the AVAE-DM
with the Bhattacharyya distance [25], which is yet another
metric to measure the similarity of two probability distri-
butions. The Bhattacharyya distance BD(p, q) between p
and ¢q distributions over the same domain X is defined as
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BD(p,q) = - In (Z \/p(x)*q(x)>

xeX
Then, our new objective is

min max BD (Exmpi D(%)], Eop(2)[D(G(2))])

where pg... and p(z) are once again the data distribution
and the model distribution, respectively.

Our DR-A approach mainly encompasses the AVAE-
DM-based algorithm with Bhattacharyya distance. In
DR-A, we employed ZINB conditional likelihood for
p(x|z) to reconstruct the decoder’s output for the
scRNA-seq data [7, 23]. To accordingly handle dropout
events (that is, zero expression measurements), DR-A
models the scRNA-seq expression level x following a
ZINB distribution, which appears to provide a good fit
for the scRNA-seq data [7, 23].

In this study, the encoder, decoder, and discriminator
are designed from 1, 2, 3, or 4 layers of a fully connected
neural network with 8, 16, 32, 64, 128, 256, 512, or 1024
nodes each. The best hyper-parameter set from numer-
ous possibilities was chosen from a grid search that
maximized clustering performance in the testing data
sets. Dropout regularization was used for all neural net-
works. The activation functions between two hidden
layers are all leaky rectified linear (Leaky ReLu) activa-
tion functions. Deep learning models have high variance
and never give the same answer when running multiple
times. In order to achieve reproducible results, we used
the Python and TensorFlow commands such as np.ran-
dom.seed(0) and tf.set_random_seed(0) to obtain a single
number.

Benchmarking

For the benchmarking task, we employed several state-
of-the-art methods as described below. We employed
the ZIFA method [6] with the block algorithm (that is,
function block) using default parameters, which is imple-
mented in the ZIFA python package (Version 0.1) and is
available at https://github.com/epierson9/ZIFA. The out-
come of ZIFA is an N x K matrix corresponding to a
low-dimensional projection in the latent space with the
number of samples N and the number of latent dimen-
sions K, where we chose K =2, 10, and 20.

Furthermore, we used the PCA method [3] from
Scikit-learn, a machine learning library, using default
parameters and log-data. We also employed the t-SNE
method [12] from Scikit-learn, a machine learning li-
brary, using default parameters (for example, perplexity
parameter of 30). In addition, we utilized the UMAP
method [13], a manifold learning technique, using de-
fault parameters and log-data. The embedding layer was
2 10, and 20 latent dimensions.
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Moreover, we utilized scVI [7], which is based on the
variational autoencoder [22] and conditional distribu-
tions with a ZINB form [31]. Based on the implications
described in scVI [7], we used one layer with 128 nodes
in the encoder and one layer with 128 nodes in the de-
coder. We also used two layers with 128 nodes in the
encoder and two layers with 128 nodes in the decoder.
The embedding layer was 2, 10, and 20 latent dimen-
sions. The ADAM optimizer was used with learning rate
0.001. The hyper-parameters were selected through best
clustering performance in the testing data.

We also employed SAUCIE [8], which is based on the
autoencoder [32]. SAUCIE consists of an encoder, an
embedding layer, and then a decoder. Based on the indi-
cations reported in SAUCIE [8], we used three layers
with 512, 256, and 128 nodes in the encoder and sym-
metrically three layers with 128, 256, and 512 nodes in
the decoder. We also used three layers with 256, 128,
and 64 nodes in the encoder and symmetrically three
layers with 64, 128, and 256 nodes in the decoder. The
embedding layer was 2 10, and 20 latent dimensions.
The ADAM optimizer was used with learning rate 0.001.
The hyper-parameters were chosen via best clustering
performance in the testing data sets.

Datasets

Table 1 shows the list of the five scRNA-seq datasets
used in this study. All datasets were pre-processed to ob-
tain 720 highest variance genes across the cells [33]. It is
assumed that genes with highest variance relative to
their mean expression are as a result of biological effects
instead of technical noise [4]. The transformation used
in the counts matrix data C was log, (1 + C).

As shown in Table 1, the Zeisel-3 k dataset [1] consists
of 3005 cells in the somatosensory cortex and hippocam-
pal region from the mouse brain. The Zeisel-3 k dataset
has the ground truth labels of 7 distinct cell types such
as pyramidal cells, oligodendrocytes, mural cells, inter-
neurons, astrocytes, ependymal cells, and endothelial
cells in the brain.

Moreover, the Macoskco-44 k dataset [10] is comprised
of cells in the mouse retina region and chiefly consists of
retinal cell types such as amacrine cells, bipolar cells, hori-
zontal cells, photoreceptor cells, and retinal ganglion cells.
In addition, the Zheng-68k dataset [26] contains fresh
peripheral blood mononuclear cells in a healthy human
and principally involves major cell types of peripheral
blood mononuclear cells such as T cells, NK cells, B cells,
and myeloid cells. Furthermore, the Zheng-73k dataset
[26] consists of fluorescence-activated cell sorting cells in
a healthy human and primarily incorporates T cells, NK
cells, and B cells. Finally, the Rosenberg-156 k dataset [27]
consists of cells from mouse brains and spinal cords and
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mainly contains neuronal cell types such as cerebellar
granule cells, mitral cells, and tufted cells.

Performance evaluation

In order to evaluate the quality of low-dimensional rep-
resentation from dimension reduction, we applied the K-
means clustering algorithm to the low-dimensional
representations of the dimension reduction methods (in-
cluding the DR-A, PCA, scVI, SAUCIE, ZIFA, t-SNE, and
UMAP methods as described previously) and compared
the clustering results to the cell types with ground truth
labels, where we set the number of clusters to the number
of cell types. Then, we employed NMI scores [28] to
assess the performance. Assume that X is the predicted
clustering results and Y is the cell types with ground truth
labels, NMI is calculated as follows:

_ MI(X;Y)
HX)H(Y)

where MI is the mutual entropy between X and Y, and
H is the Shannon entropy.

Data visualization

After we performed the dimensionality reduction task using
our DR-A framework, we leveraged the low-dimensional
view of the data for visualization. The objective of the
visualization task is to identify cell types in an un-labelled
dataset and then display them in 2-D space. Note that all
our datasets had a training set and a testing set with an
80% training and 20% testing split from the original dataset.
First, we trained our DR-A model to perform the clustering
task in 2 latent dimensions (K =2) using the training set.
Next, we obtained a two-dimensional embedding (K = 2) of
the scRNA-seq data by projecting the testing set with the
trained DR-A model. This latent (K =2) estimated by our
DR-A model represents two dimensional coordinates for
each input data point, which was then utilized to perform a
2-D plot. Similarly, we implemented 2-D plots for the PCA,
ZIFA, scVI, SAUCIE, t-SNE, and UMAP methods after per-
forming the clustering task in 2 latent dimensions (K =2),
respectively.

In addition, we performed data visualization by a two-
step approach, which combines our DR-A method with
the t-SNE algorithm. In the first step, we performed the
clustering task in 10 latent dimensions (K=10) using
our DR-A model. In the second step, we used the latent
(K =10) estimated in the first step as input to the t-SNE
algorithm and generated a two-dimensional embedding
(K=2) of the scRNA-seq data. This latent (K=2) esti-
mated by the t-SNE algorithm represents two dimen-
sional coordinates for each input data point, which was
then utilized to perform a 2-D plot.
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