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Abstract

Intelligent behaviour in the real-world requires the ability to acquire new knowledge
from an ongoing sequence of experiences while preserving and reusing past knowl-
edge. We propose a novel algorithm for unsupervised representation learning from
piece-wise stationary visual data: Variational Autoencoder with Shared Embeddings
(VASE). Based on the Minimum Description Length principle, VASE automatically
detects shifts in the data distribution and allocates spare representational capacity to
new knowledge, while simultaneously protecting previously learnt representations
from catastrophic forgetting. Our approach encourages the learnt representations
to be disentangled, which imparts a number of desirable properties: VASE can
deal sensibly with ambiguous inputs, it can enhance its own representations through
imagination-based exploration, and most importantly, it exhibits semantically
meaningful sharing of latents between different datasets. Compared to baselines
with entangled representations, our approach is able to reason beyond surface-level
statistics and perform semantically meaningful cross-domain inference.

1 Introduction

A critical feature of biological intelligence is its capacity for life-long learning [10] – the ability to
acquire new knowledge from a sequence of experiences to solve progressively more tasks, while
maintaining performance on previous ones. This, however, remains a serious challenge for current
deep learning approaches. While current methods are able to outperform humans on many individual
problems [51, 36, 20], these algorithms suffer from catastrophic forgetting [14, 33, 34, 42, 17].
Training on a new task or environment can be enough to degrade their performance from super-human
to chance level [46]. Another critical aspect of life-long learning is the ability to sensibly reuse
previously learnt representations in new domains (positive transfer). For example, knowing that
strawberries and bananas are not edible when they are green could be useful when deciding whether to
eat a green peach in the future. Finding semantic homologies between visually distinctive domains can
remove the need to learn from scratch on every new environment and hence help with data efficiency
– another major drawback of current deep learning approaches [16, 29].

But how can an algorithm maximise the informativeness of the representation it learns on one domain
for positive transfer on other domains without knowing a priori what experiences are to come? One
approach might be to capture the important structure of the current environment in a maximally
compact way (to preserve capacity for future learning). Such learning is likely to result in positive
transfer if future training domains share some structural similarity with the old ones. This is a
reasonable expectation to have for most natural (non-adversarial) tasks and environments, since they
tend to adhere to the structure of the real world (e.g. relate to objects and their properties) governed by
the consistent rules of chemistry or physics. A similar motivation underlies the Minimum Description
Length (MDL) principle [44] and disentangled representation learning [8].
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Figure 1: A: Schematic representation of the life-long learning data distribution. Each dataset/environment
corresponds to a cluster s. Data samples x constituting each cluster can be described by a local set of coordinates
(data generative factors zn). Different clusters may share some data generative factors. B: VASE model architecture
C: ConContinSchematic of the “dreaming” feedback loop. We use a snapshot of the model with the old parameters
(φold, θold) to generate an imaginary batch of data xold for a previously experienced dataset sold. While learning in
the current environment, we ensure that the representation is still consistent on the hallucinated “dream” data, and
can reconstruct it (see red dashed lines).

Recent state of the art approaches to unsupervised disentangled representation learning [21, 9, 24, 28]
use a modified Variational AutoEncoder (VAE) [26, 43] framework to learn a representation of
the data generative factors. These approaches, however, only work on independent and identically
distributed (IID) data from a single visual domain. This paper extends this line of work to life-long
learning from piece-wise stationary data, exploiting this setting to learn shared representations across
domains where applicable. The proposed Variational Autoencoder with Shared Embeddings (VASE,
see fig. 1B) automatically detects shifts in the training data distribution and uses this information to
allocate spare latent capacity to novel dataset-specific disentangled representations, while reusing
previously acquired representations of latent dimensions where applicable. We use latent masking and
a generative “dreaming” feedback loop (similar to [41, 49, 48, 5]) to avoid catastrophic forgetting. Our
approach outperforms [41], the only other VAE based approach to life-long learning we are aware of.
Furthermore, we demonstrate that the pressure to disentangle endows VASE with a number of useful
properties: 1) dealing sensibly with ambiguous inputs; 2) learning richer representations through
imagination-based exploration; 3) performing semantically meaningful cross-domain inference by
ignoring irrelevant aspects of surface-level appearance.

2 Related work

The existing approaches to continual learning can be broadly separated into three categories: data-,
architecture- or weights-based. The data-based approaches augment the training data on a new task
with the data collected from the previous tasks, allowing for simultaneous multi-task learning on
IID data [11, 45, 42, 33, 15]. The architecture-based approaches dynamically augment the network
with new task-specific modules, which often share intermediate representations to encourage positive
transfer [46, 39, 47]. Both of these types of approaches, however, are inefficient in terms of the memory
requirements once the number of tasks becomes large. The weights-based approaches do not require
data or model augmentation. Instead, they prevent catastrophic forgetting by slowing down learning
in the weights that are deemed to be important for the previously learnt tasks [27, 53, 38]. This is a
promising direction, however, its application is limited by the fact that it typically uses knowledge
of the task presentation schedule to update the loss function after each switch in the data distribution.

Most of the continual learning literature, including all of the approaches discussed above, have been
developed in task-based settings, where representations are learnt implicitly. While deep networks
learn well in such settings [1, 50], this often comes at a cost of reduced positive transfer. This is because
the implicitly learnt representations often overfit to the training task by discarding information that is
irrelevant to the current task but may be required for solving future tasks [1–3, 50, 22]. The acquisition
of useful representations of complex high-dimensional data without task-based overfitting is a core goal
of unsupervised learning. Past work [2, 4, 21] has demonstrated the usefulness of information-theoretic
methods in such settings. These approaches can broadly be seen as efficient implementations of the
Minimum Description Length (MDL) principle for unsupervised learning [44, 18]. The representations
learnt through such methods have been shown to help in transfer scenarios and with data efficiency
for policy learning in the Reinforcement Learning (RL) context [22]. These approaches, however,
do not immediately generalise to non-stationary data. Indeed, life-long unsupervised representation
learning is relatively under-developed [49, 48, 38]. The majority of recent work in this direction has
concentrated on implicit generative models [49, 48], or non-parametric approaches [35]. Since these
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approaches do not possess an inference mechanism, they are unlikely to be useful for subsequent task
or policy learning. Furthermore, none of the existing approaches explicitly investigate meaningful
sharing of latent representations between environments.

3 Framework

3.1 Problem formalisation

We assume that there is an a priori unknown set S={s1,s2,...,sK} ofK environments which, between
them, share a setZ={z1,z2,...,zN} ofN independent data generative factors. We assume z∼N (0, I).
Since we aim to model piece-wise stationary data, it is reasonable to assume s∼Cat(π1,...,K), where
πk is the probability of observing environment sk. Two environments may use the same generative
factors but render them differently, or they may use a different subset of factors altogether. Given an
environment s, and an environment-dependent subsetZs⊆Z of the ground truth generative factors,
it is possible to synthesise a dataset of images xs∼p(·|zs,s). In order to keep track of which subset
of theN data generative factors is used by each environment s to generate images xs, we introduce an
environment-dependent mask as with dimensionality |a|=N , where asn=1 if zn∈Zs and zero other-
wise. Hence, we assume as∼Bern(ωs1,...,N ), where ωsn is the probability that factor zn is used in envi-
ronment s. This leads to the following generative process (where “�” is element-wise multiplication):

z∼N (0, I), s∼Cat(π1,...,K), as∼Bern(ωs1,...,N ),

zs=as�z, xs∼p(· | zs,s)
(1)

Intuitively, we assume that the piece-wise stationary observed data x can be split into clusters
(environments s) (note evidence for similar experience clustering from the animal literature [6]).
Each cluster has a set of standard coordinate axes (a subset of the generative factors z chosen by the
latent mask as) that can be used to parametrise the data in that cluster (fig. 1A). Given a sequence
x=(xs1 , xs2 , ...) of datasets generated according to the process in eq. (1), where sk∼p(s) is the k-th
sample of the environment, the aim of life-long representation learning can be seen as estimating the
full set of generative factorsZ ≈

⋃
k q(z

sk |xsk) from the environment-specific subsets of z inferred
on each stationary data cluster xsk . Henceforth, we will drop the subscript k for simplicity of notation.

3.2 Inferring the data generative factors

Observations xs cannot contain information about the generative factors zn that are not relevant for
the environment s. Hence, we use the following form for representing the data generative factors:

q(zs|xs)=as � N (µ(x), σ(x))+(1−as) � N (0, I). (2)
Note that µ and σ in eq. (2) depend only on the data x and not on the environment s. This is important
to ensure that the semantic meaning of each latent dimension zn remains consistent for different
environments s. We model the representation q(zs|xs) of the data generative factors as a product of
independent normal distributions to match the assumed prior p(z)∼N (0, I).

In order to encourage the representation q(zs|xs) to be semantically meaningful, we encourage it to
capture the generative factors of variation within the data xs by following the MDL principle. We
aim to find a representation zs that minimises the reconstruction error of the input data xs conditioned
on zs under a constraint on the quantity of information in zs. This leads to the following loss function:

LMDL(φ,θ)=Ezs∼qφ(·|xs)[−log pθ(x | z
s,s)]︸ ︷︷ ︸

Reconstruction error

+ γ|KL(qφ(zs|xs)||p(z))︸ ︷︷ ︸
Representation capacity

− C︸︷︷︸
Target

|2 (3)

The loss in eq. (3) is closely related to the β-VAE [21] objective L = Ez∼qφ(·|x)[− log pθ(x|z)] +
β KL(qφ(z|x)||p(z)), which uses a Lagrangian to limit the latent bottleneck capacity, rather than
an explicit target C. It was shown that optimising the β-VAE objective helps with learning a more
semantically meaningful disentangled representation q(z|x) of the data generative factors [21].
However, [9] showed that progressively increasing the target capacityC in eq. (3) throughout training
further improves the disentanglement results reported in [21], while simultaneously producing sharper
reconstructions. Progressive increase of the representational capacity also seems intuitively better
suited to continual learning where new information is introduced in a sequential manner. Hence, VASE
optimises the objective function in eq. (3) over a sequence of datasets xs. This, however, requires
a way to infer s and as, as discussed next.
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3.3 Inferring the latent mask

Given a dataset xs, we want to infer which latent dimensions zn were used in its generative process
(see eq. (1)). This serves multiple purposes: 1) helps identify the environment s (see next section);
2) helps ignore latent factors zn that encode useful information in some environment but are not used
in the current environment s, in order to prevent retraining and subsequent catastrophic forgetting;
and 3) promotes latent sharing between environments. Remember that eq. (3) indirectly optimises
for Exs [qφ(z

s|xs)] ≈ p(z) after training on a dataset s. If a new dataset uses the same generative
factors as xs, then the marginal behaviour of the corresponding latent dimensions zn will not change.
On the other hand, if a latent dimension encodes a data generative factor that is irrelevant to the new
dataset, then it will start behaving atypically and stray away from the prior. We capture this intuition
by defining the atypicality score αn for each latent dimension zn on a batch of data xsbatch:

αn=KL
(
Exsbatch

[ qφ(z
s
n|xsbatch) ] || p(zn)

)
. (4)

The atypical components are unlikely to be relevant to the current environment, so we mask them out:

asn=

{
1, if αn<λ
0, otherwise

(5)

where λ is a threshold hyperparameter (see appendices A.2 and A.3 for more details). Note that the
uninformative latent dimensions zn that have not yet learnt to represent any data generative factors,
i.e. qφ(zn|xsn)= p(zn), are automatically unmasked in this setup. This allows them to be available
as spare latent capacity to learn new generative factors when exposed to a new dataset. Fig. 2 shows
the sharp changes in αn at dataset boundaries during training.

3.4 Inferring the environment

Given the generative process introduced in eq. (1), it may be tempting to treat the environment s as
a discrete latent variable and learn it through amortised variational inference. However, we found that
in the continual learning scenario this is not a viable strategy. Parametric learning is slow, yet we have
to infer each new data cluster s extremely fast to avoid catastrophic forgetting. Hence, we opt for a fast
non-parametric meta-algorithm motivated by the following intuition. Having already experienced r
datasets during life-long learning, there are two choices when it comes to inferring the current one s: it
is either a new dataset sr+1, or it is one of the r datasets encountered in the past. Intuitively, one way to
check for the former is to see whether the current data xs seems likely under any of the previously seen
environments. This condition on its own is not sufficient though. It is possible that environment s uses a
subset of the generative factors used by another environmentZs⊆Zt, in which case environment twill
explain the data xs well, yet it will be an incorrect inference. Hence, we have to ensure that the subset
of the relevant generative factors zs inferred for the current data xs according to section 3.3 matches
that of the candidate past dataset t. Given a batch xsbatch, we infer the environment s according to:

s=

{
ŝ , if Ezŝ [ pθ(x

s
batch|zŝ,ŝ) ] ≤κLŝ ∧ as=aŝ

sr+1, otherwise
(6)

where ŝ=argmaxs q(s|xsbatch) is the output of an auxiliary classifier trained to infer the most likely
previously experienced environment ŝ given the current batch xsbatch,Lŝ is the average reconstruction
error observed for the environment ŝwhen it was last experienced, and κ is a threshold hyperparameter
(see appendix A.2 for details).

3.5 Preventing catastrophic forgetting

So far we have discussed how VASE integrates knowledge from the current environment into its
representation qφ(z|x), but we haven’t yet discussed how we ensure that past knowledge is not
forgotten in the process. Most standard approaches to preventing catastrophic forgetting discussed
in section 2 are either not applicable to a variational context, or do not scale well due to memory
requirements. However, thanks to learning a generative model of the observed environments, we
can prevent catastrophic forgetting by periodically hallucinating (i.e. generating samples) from past
environments using a snapshot of VASE, and making sure that the current version of VASE is still
able to model these samples. A similar “dreaming” feedback loop was used in [41, 49, 48, 5].
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More formally, we follow the generative process in eq. (1) to create a batch of samples
xold ∼ qθold(·|z,sold) using a snapshot of VASE with parameters (φold, θold) (see fig. 1C). We then
update the current version of VASE according to the following (replacing old with ′ for brevity):

Lpast(φ,θ)=Ez,s′,x′

[
D[qφ(z|x′), qφ′(z′|x′)]︸ ︷︷ ︸

Encoder proximity

+D[qθ(x|z,s′), qθ′(x′|z,s′)]︸ ︷︷ ︸
Decoder proximity

]
, (7)

whereD is a distance between two distributions (we use the Wasserstein distance for the encoder and
KL divergence for the decoder). The snapshot parameters get synced to the current trainable parameters
φold←φ, θold←θ every τ training steps, where τ is a hyperparameter. The expectation over simulators
sold and latents z in eq. (7) is done using Monte Carlo sampling (see appendix A.2 for details).

3.6 Model summary

To summarise, we train our model using a meta-algorithm with both parametric and non-parametric
components. The latter is needed to quickly associate new experiences to an appropriate cluster, so that
learning can happen inside the current experience cluster, without disrupting unrelated clusters. We
initialise the latent representation z to have at least as many dimensions as the total number of the data
generative factors |z|≥|Z|=N , and the softmax layer of the auxiliary environment classifier to be at
least as large as the number of datasets |S|=K. As we observe the sequence of training data, we detect
changes in the environment and dynamically update the internal estimate of r≤K datasets experienced
so far according to eq. (6). We then train VASE by minimising the following objective function:

L(φ,θ)=Ezs∼qφ(·|xs))[−logpθ(x|z
s,s)] + γ|KL(qφ(zs|xs)||p(z))−C|2︸ ︷︷ ︸

MDL on current data

+

+Ez,s′,x′

[
D[qφ(z|x′), qφ′(z′|x′)]+D[qθ(x|z,s′), qθ′(x′|z,s′)]

]
.︸ ︷︷ ︸

“Dreaming” feedback on past data

(8)

4 Experiments

Continual learning with disentangled shared latents First, we qualitatively assess whether VASE
is able to learn good representations in a continual learning setup. We use a sequence of three datasets:
(1) a moving version of Fashion-MNIST [52] (shortened to moving Fashion), (2) MNIST [30], and (3)
a moving version of MNIST (moving MNIST). During training we expect VASE to detect shifts in the
data distribution and dynamically create new experience clusters s, learn a disentangled representation
of each environment without forgetting past environments, and share disentangled factors between
environments in a semantically meaningful way. Fig. 2 (top) compares the performance of VASE to that
of Controlled Capacity Increase-VAE (CCI-VAE) [9], a model for disentangled representation learning
with the same architecture as VASE but without the modifications introduced in this paper to allow for
continual learning. It can be seen that unlike VASE, CCI-VAE forgot moving Fashion at the end of the
training sequence. Both models were able to disentangle position from object identity, however, only
VASE was able to meaningfully share latents between the different datasets - the two positional latents
are active for two moving datasets but not for the static MNIST. VASE also has moving Fashion- and
MNIST-specific latents, while CCI-VAE shares all latents between all datasets. VASE use only 8/24 la-
tent dimensions at the end of training. The rest remained as spare capacity for learning on future datasets.

Learning representations for tasks We train object identity classifiers (one each for moving
Fashion and MNIST) and an object position regressor on top of the latent representation z∼qφ(z|x)
at regular intervals throughout the continual learning sequence. Good accuracy on these measures
would indicate that at the point of measurement, the latent representation z contained dataset
relevant information, and hence could be useful, e.g. for subsequent policy learning in RL agents.
Figure 2 (bottom) shows that both VASE and CCI-VAE learn progressively more informative latent
representations when exposed to each dataset s, as evidenced by the increasing classification accuracy
and decreasing mean squared error (MSE) measures within each stage of training. However, with
CCI-VAE, the accuracy and MSE measures degrade sharply once a domain shift occurs. This is not
the case for VASE, which retains a relatively stable representation.
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Figure 2: We compare VASE to a CCI-VAE baseline. Both are trained on a sequence of three datasets: moving
fashion MNIST (moving Fashion)→MNIST→moving MNIST. Top: latent traversals at the end of training
seeded with samples from the three datasets. The value of each latent zn is traversed between -2 and 2 one at a time,
and the corresponding reconstructions are shown. Rows correspond to latent dimensions zn, columns correspond
to the traversal values. Latent use progression throughout training is demonstrated in colour. Bottom: performance
of MNIST and Fashion object classifiers and a position regressor trained on the latent space z throughout training.
Note the relative stability of the curves for VASE compared to the baseline. The atypicality profile shows the values
of αn through training (different colours indicate different latent dimensions), with the threshold λ indicated by
the dashed black line.
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Figure 3: Latent traversals (A) and classification accuracy (B) (both as in fig. 2) for VASE trained on a sequence of
moving MNIST→ Fashion→ inverse Fashion→MNIST→moving Fashion. See fig. 7 for larger traversals.

Ablation study Here we perform a full ablation study to test the importance of the proposed
components for unsupervised life-long representation learning: 1) regularisation towards disentangled
representations (section 3.2), 2) latent masking (section 3.3 - A), 3) environment clustering (section 3.4
- S), and 4) “dreaming” feedback loop (section 3.5 - D). We use the constraint capacity loss in eq. (3)
for the disentangled experiments, and the standard VAE loss [26, 43] for the entangled experiments
[21]. For each condition we report the average change in the classification metrics reported above,
and the average maximum values achieved (see appendix A.5 for details). Table 1 shows that the
unablated VASE (SDA) has the best performance. Note that the entangled baselines perform worse
than the disentangled equivalents, and that the capacity constraint of the CCI-VAE framework does
not significantly affect the maximal classification accuracy compared to the VAE. It is also worth
noting that VASE outperforms the entangled SD condition, which is similar to the only other baseline
VAE-base approach to continual learning that we are aware of [41]. We have also trained VASE on
longer sequences of datasets (moving MNIST→ Fashion→ inverse Fashion→MNIST→moving
Fashion) and found similar levels of performance (see fig. 3).

Dealing with ambiguity Natural stimuli are often ambiguous and may be interpreted differently
based on contextual clues. Examples of such processes are common, e.g. visual illusions like the
Necker cube [37], and may be driven by the functional organisation and the heavy top-down influences
within the ventral visual stream of the brain [19, 40]. To evaluate the ability of VASE to deal with
ambiguous inputs based on the context, we train it on a CelebA [32]→ inverse Fashion sequence, and
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DISENTANGLED ENTANGLED
OBJECT ID ACCURACY POSITION MSE OBJECT ID ACCURACY POSITION MSE

ABLATION MAX (%) CHANGE (%) MIN (*1E-4) CHANGE (*1E-4) MAX (%) CHANGE (%) MIN (*1E-4) CHANGE (*1E-4)
- 88.6 (±0.4) -15.2 (±2.8) 3.5 (±0.05) 24.8 (±13.5) 91.8 (±0.4) -12.1 (±0.8) 4.2 (±0.7) 10.5 (±2.6)
S 88.9 (±0.5) -13.9 (±1.9) 3.4 (±0.05) 22.5 (±12.2) 91.7 (±0.4) -12.2 (±0.03) 4.5 (±0.8) 10.9 (±3.1)
D 88.6 (±0.3) -14.4 (±1.9) 3.3 (±0.04) 21.4 (±4.9) 91.8 (±0.4) -12.4 (±0.7) 4.3 (±0.7) 11.7 (±3.2)
A 86.7 (±1.9) -24.5 (±1.0) 3.3 (±0.04) 67.6 (±107.0) 88.6 (±0.3) -19.7 (±0.5) 4.5 (±0.7) 47.1 (±26.2)
SA 87.1 (±1.8) -28.1 (±0.08) 3.3 (±0.04) 78.9 (±109.0) 89.9 (±1.3) -18.3 (±0.4) 4.8 (±0.7) 41.8 (±20.6)
DA 86.3 (±2.5) -25.2 (±0.5) 3.3 (±0.04) 72.2 (±90.0) 88.8 (±0.3) -19.4 (±0.4) 4.6 (±0.7) 40.2 (±19.2)
SD 88.3 (±0.3) -12.9 (±1.9) 3.4 (±0.05) 20.0 (±3.5) 91.4 (±0.3) -11.7 (±0.6) 4.3 (±0.5) 11.6 (±1.9)
VASE (SDA) 88.6 (±0.4) -5.4 (±0.3) 3.2 (±0.03) 3.0 (±0.2) 91.5 (±0.1) -6.5 (±0.7) 4.2 (±0.4) 3.9 (±1.1)

Table 1: Average change in classification accuracy/MSE and maximum/minimum average accuracy/MSE when
training an object/position classifier/regressor on top of the learnt representation on the moving Fashion→MNIST
→moving MNIST sequence. We do a full ablation study of VASE, where D - dreaming feedback loop, S - cluster
inference q(s|xs), and A - atypicality based latent mask as inference. We compare two versions of our model - one
that is encouraged to learn a disentangled representation through the capacity increase regularisation in eq. (3), and
an entangled VAE baseline (β=1). The unablated disentangled version of VASE (SDA) has the best performance.

test it using ambiguous linear interpolations between samples from the two datasets (fig. 4A, first row).
To measure the effects of ambiguity, we varied the interpolation weights between the two datasets. To
measure the effects of context, we presented the ambiguous samples in a batch with real samples from
one of the training datasets, varying the relative proportions of the two. Figure 4A (bottom) shows
the inferred probability of interpreting the ambiguous samples as CelebA qφ(s= celebA|x). VASE
shows a sharp boundary between interpreting input samples as Fashion or CelebA despite smooth
changes in input ambiguity. Such categorical perception is also characteristic of biological intelligence
[12, 13, 31]. The decision boundary for categorical perception is affected by the context in which the
ambiguous samples are presented. VASE also represents its uncertainty about the ambiguous inputs
by increasing the inferred variance of the relevant latent dimensions (fig. 4A, second row).

Semantic transfer Here we test whether VASE can learn more sophisticated cross-domain latent
homologies than the positional latents on the moving MNIST and Fashion datasets described above.
Hence, we trained VASE on a sequence of two visually challenging DMLab-30 1 [7] datasets: the
Exploit Deferred Effects (EDE) environment and a randomized version of the Natural Labyrinth
(NatLab) environment (Varying Map Randomized). While being visually very distinct (one being
indoors and the other outdoors), the two datasets share many data generative factors that have to do with
the 3D geometry of the world (e.g. horizon, walls/terrain, objects/cacti) and the agent’s movements
(first person optic flow). Hence, the two domains share many semantically related factors z, but these
are rendered into very different visuals x. We compared cross-domain reconstructions of VASE and an
equivalent entangled VAE (β=1) baseline. The reconstructions were produced by first inferring a latent
representation based on a batch from one domain, e.g. zNatLab=qφ(·|xNatLab), and then reconstructing
them conditioned on the other domain xxRec=qθ(·|zNatLab,sEDE). Fig. 4 shows that VASE discovered
the latent homologies between the two domains, while the entangled baseline failed to do so. VASE
learnt the semantic equivalence between the cacti in NatLab and the red objects in EDE, the brown
fog corresponding to the edge of the NatLab world and the walls in EDE (top leftmost reconstruction),
and the horizon lines in both domains. The entangled baseline, on the other hand, seemed to rely on the
surface-level pixel statistics and hence struggled to produce meaningful cross-domain reconstructions,
attempting to match the texture rather than the semantics of the other domain. See appendix A.6 for
additional cross-domain reconstructions, including on the sequence of five datasets mentioned earlier.

Imagination-driven exploration Once we learn the concept of moving objects in one environment,
it is reasonable to imagine that a novel object encountered in a different environment can also be moved.
Given the ability to act, we may try to move the object to realise our hypothesis. We can use such
imagination-driven exploration to augment our experiences in an environment and let us learn a richer
representation. Notice however, that such imagination requires a compositional representation that
allows for novel yet sensible recombinations of previously learnt semantic factors. We now investigate
whether VASE can use such imagination-driven exploration to learn better representations using a
sequence of three datasets: moving Fashion→MNIST→moving MNIST. During the first moving
Fashion stage, VASE learns the concepts of position and Fashion sprites. It also learns how to move the
sprites to reach the imagined states z∗ by training an auxiliary policy (see appendix A.3.1 for details).

1https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/
dmlab30#dmlab-30
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Figure 4: A Top: Ambiguous input examples created by using different interpolation weights between samples
from CelebA and Fashion, and corresponding inferred parameters µ (y axis) and σ (light colour range) of qφ(z|x);
red corresponds to Fashion-specific latents, blue to CelebA-specific latents. Middle: Reconstruction samples
pθ(x

s|zs,s) for different levels of ambiguity conditioned on either dataset. Bottom: Inferred qψ(s=CelebA given
different levels of input ambiguity (x axis) and different number of ambiguous vs real data samples (y axis) for the
two datasets. VASE deals well with ambiguity, shows context-dependent categorical perception and uncertainty
within its inferred representation parameters. B Cross-domain reconstructions on NatLab (outdoors) or EDE
(indoors) DM Lab levels. The disentangled VASE finds semantic homologies between the two datasets (e.g. cacti
→ red objects). The entangled VASE only maps lower level statistics. C Imagination-based exploration allows
VASE to imagine the possibility of moving MNIST digits during static MNIST training by using position latents
acquired on moving Fashion. This helps it learn a moving MNIST classifier during static MNIST training without
ever seeing real translations of MNIST digits.

It can then use this policy to do an imagination-based augmentation of the input data on MNIST by
imagining MNIST digits in different positions and transforming the static sprites correspondingly
using the learnt policy. Hence, VASE can imagine the existence of moving MNIST before actually
experiencing it. Indeed, fig. 4C shows that when we train a moving MNIST classifier during the
static MNIST training stage, the classifier is able to achieve good accuracy in the imagination-driven
exploration condition, highlighting the benefits of imagination-driven data augmentation.

5 Conclusions

We have introduced VASE, a novel approach to life-long unsupervised representation learning
that builds on recent work on disentangled factor learning [21, 9] by introducing several new key
components. Unlike other approaches to continual learning, our algorithm does not require us to
maintain a replay buffer of past datasets, or to change the loss function after each dataset switch. In fact,
it does not require any a priori knowledge of the dataset presentation sequence, since these changes in
data distribution are automatically inferred. We have demonstrated that VASE can learn a disentangled
representation of a sequence of datasets. It does so without experiencing catastrophic forgetting
and by dynamically allocating spare capacity to represent new information. It resolves ambiguity
in a manner that is analogous to the categorical perception characteristic of biological intelligence.
Most importantly, VASE allows for semantically meaningful sharing of latents between different
datasets, which enables it to perform cross-domain inference and imagination-driven exploration.
Taken together, these properties make VASE a promising algorithm for learning representations that
are conducive to subsequent robust and data-efficient RL policy learning.
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A Supplemental Details

A.1 Model details

Encoder and decoder For the encoder we use a simple convolutional network with the following structure:
conv 64 → conv 64 → conv 128→ conv 128→ fc 256, where conv n_filters is a 4×4 convolution
with n_filters output filters, ReLU activations and stride 2, and similarly fc n_out is a fully connected layer
with n_out units. The output of the fully connected layer is given to a linear layer that outputs the mean µenc(x)
and log-variance logσ2

enc(x) of the encoder posterior qφ(z|x) ∼ N(µenc(x),σ2
enc(x)). The decoder network

receives a sample z∼ qφ(z|x) from the encoder and outputs the parameters of a distribution pθ(x|z,s) over x.
We use the transpose of the encoder network, but we also feed it the environment index s by first encoding it with
a one-hot encoding (of size max_environments, which is a hyperparameter), and then concatenating it to z. For
most of the experiments, we use a product of independent Bernoulli distributions (parametrised by the mean) for
the decoder distribution pθ(x|z,s). In the DM Lab experiments we use instead a product of Gaussian distributions
with fixed variance. We train the model using Adam [25] with a fixed learning rate 6e-4 and batch size 64.

Environment inference network We attach an additional fully connected layer to the last layer of the
encoder (gradients to the encoder are stopped). Given an input image x, the layer outputs a softmax distribution
qψ(s|x) over max_environments indices, which tries to infer the most likely index s of the environment from
which the data is coming, assuming the environment was already seen in the past. Notice that we always know
the (putative) index of the current data (ŝ in Equation (6), also see Appendix A.2), so that we can always train
this layer to associate the current data to the current index. However, to avoid catastrophic forgetting we also
need to train on hallucinated data from past environments. Assuming ŝ is the current environment andm is the
total number of environments seen until now, the resulting loss function is given by:

Lenv = Ex[−log(qψ(ŝ|x))]︸ ︷︷ ︸
Classification loss on current data

+Eŝ 6=s<mEx′∼pθ′ (x′|z′,s)[−logqψ(s|x′)]︸ ︷︷ ︸
Classification loss on hallucinated data

,

where the hallucinated data x′ in the second part of the equation is generated according to Section 3.5, and the
expectation over s is similarly done through Monte Carlo sampling.

A.2 Extra algorithm implementation details

Atypical latent components The atypicality αn of the component zn on a batch of samples x1, ... ,xB
is computed using a KL divergence from the marginal posterior over the batch to the prior according to
Equation (4). In practice it is not convenient to compute this KL divergence directly. Rather, we observe that
the marginal distribution of the latent samples 1

B

∑B
b=1qφ(zn|xb) is approximately Gaussian. We exploit this

by fitting a Gaussian to the latent samples z and then computing in closed-form the KL-divergence between this
approximation of the marginal and the unit Gaussian prior p(z)=N (0,1).

Recall from Section 3.3 that we deem a latent component zn to be active (an = 1) whenever it is typical, that
is, if αn<λ. However, since the atypicality is computed on a relatively small batch ofB samples, αi may be
a noisy estimate of atypicality. Hence we introduce the following filtering: we set αn=1 if αn>λ1 and αn=0
if αn<λ0, with λ0<λ1. If λ0<αn<λ1, we leave αn unchanged.

Used latent components We say that a factor zn is not used by the environment s if the reconstruction
pθ(x|z,s) does not depend on zn. To measure this, we find the maximum amount of noise we can add to zn
without changing the reconstruction performance of the network. That is, we optimise

Σ= argmin
Σ=diag(σ1,...,σN )

Eε∼N (0,σ)[−logpθ(x|zε,s)]−log|Σ|

where zεn=(1−δnm)zn+δnm(zn+ε). If σ′n>T for some threshold T , we say that zn is unused. We generally
observe that components are either completely unused σn = 0, or else σn is very large. Therefore, picking a
threshold is very easy and the precise value does not matter. We only compare the atypicality masks in eq. (6)
for the used latents.

Environment index Expanding on the explanation in Section 3.4, letLs(x)=Ez∼qφ(z|x)[−logpθ(x|zs,s)]
be the reconstruction loss on a batch x of data, assuming it comes from the environment s. Let L̃s be the average
reconstruction loss observed in the past for data from environment s. Letm be the number of datasets observed
until now. Let us be a binary vector of used units computed with the method described before.

We run the auxiliary environment inference network (Appendix A.1) on each sample from the batch x and take the
average of all results in order to obtain a probability distribution q(s|x) over the possible environment s of the batch
x, assuming it has already been seen in the past. Let ŝ=argmaxsq(s|x) be the most likely environment, which is
our candidate for the new environment. If the reconstruction lossLŝ(x) (assuming s= ŝ) is significantly larger (see
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DISENTANGLED ENTANGLED
EXPERIMENT γ CMAX δC λ κ τ λ κ τ
ABLATION STUDY (150K) 100.0 35.0 6.3e-6 0.6 1.5 500
FIVE DATASETS (150K) 100.0 35.0 6.3e-6 0.6 1.5 5000
CELEBA→ INVERTED FASHION (30K) 200.0 20.0 1.7e-5 0.8 1.1 500
NATLAB→ EDE (60K) 200.0 25.0 1e-5 2.0 1.1 5000 20.0 1.1 5000
IMAGINATION-DRIVEN EXPLORATION (45K) 200.0 35.0 0.7e-5 0.7 1.5 500

Table 2: Hyperparameter values used for the experiments reported in this paper. Values in brackets after the
experiment name indicate the number of training steps used per dataset.

Algorithm 1) than the average loss for the environment ŝ, we decide that the data is unlikely to come from this en-
vironment, and hence we allocate a new one. If the reconstruction is good, but some of the used components (given
by u) are atypical, we still allocate a new environment. Otherwise, we assume that the data indeed comes from ŝ.

Algorithm 1 Infer the environment index s from a batch of data

ŝ←argmaxsEz∼qφ(z|x)[−logpθ(x|zs,s)]
ifLŝ>κL̃ŝ then

s←m+1
else if aŝ�us 6=a(x)�uŝ then

s←m+1
else

s← ŝ

A.3 Hyperparameter sensitivity

Table 2 lists the values of the hyperparameters used in the different experiments reported in this paper.

For all experiments we use max_environments = 7, and we increaseC in eq. (3) linearly by δC ·Cmax per step
(starting from 0) until it reachesCmax, at which point we keepC fixed at that value. In the loss function eq. (8),
the dreaming loss was re-weighted, with the full loss being:

L(φ,θ)=Ezs∼qφ(·|xs))[−logpθ(x|zs,s)] + γ|KL(qφ(zs|xs)||p(z))−C|2︸ ︷︷ ︸
MDL on current data

+

+Ez,s′,x′

[
αD[qφ(z|x′), qφ′(z′|x′)]+βD[qθ(x|z,s′), qθ′(x′|z,s′)]

]
.︸ ︷︷ ︸

“Dreaming” feedback on past data

(9)

The values α=1000 and β=20 were used for all experiments, except for in the hyperparameter sweep.

For the ablation study we ran a hyperparameter search using the full model, and used the best hyperparameters
found for all experiments. We list the search ranges and our observed sensitivity to these hyperparameters next:

• γ = coefficient for the capacity constraint – {50,100,200} – found not to be very sensitive.

• Cmax = final value ofC – {20,35,50} – classification accuracy increased significantly for capacity from
20 to 35.

• λ = atypicality threshold – {0.4,0.6,1,2} – lower threshold led to more latent freezing. Classification
performance was not very sensitive to this.

• τ = update frequency reference network – {500,1000,2000,5000} – found not to be very sensitive.

• α = weight for encoder loss in "dreaming" loop – {10,20,40} – found not to be very sensitive.

• β = weight for decoder loss in "dreaming" loop – {500,1000,2000} – found not to be very sensitive.

A.3.1 Imagination-based exploration experiments

We model a very simple interaction with the environment where the agent can translate the observed object (in
our case the input image). The agent is trained as follows: a random z∗ is sampled from the prior p(z). Given an
observation x from the environment, the agent needs to pick an action g(z∗,x) (in our case a translation) in such a
way that the encodingz∼qφ(z|g ·x) of the new imageg ·x is as close as possible toz∗. That is, we minimise the loss

Lagent =Ex∼p(x)Ez∗∼p(z)Ez∼q(z|g(z∗,x)·x)‖z∗−z‖2.
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The agent can then be used to explore the current environment. Given an image x from the current environment,
we can imagine a configuration z∗ of the latent factors, and let the agent act on the environment in order to realise
the configuration. In this way, we obtain a new image x∗ = g(z,x) ·x. We can then add the image x∗ to the
training data, which allows the encoder to learn from a possibly more diverse set of inputs than the inputs x∼p(x)
observed passively.

The policy network first processes the input image x (of size 64×64) though four convolutional 4×4 layers
with 16 filters, stride 2 and ReLU activations. The resulting vector is concatenated with the target z∗, and feed
to a 1-hidden layer fully connected network that outputs the parameters of the 2D translation g(x,z∗) to apply to
the image. We use a tanh output to ensure the translation is always in a sensible range. Once these parameters are
obtained, the transformation is applied to the image x using a Spatial Transformer Network (STN) [23], obtaining
a translated image x∗=g(z∗,x)·x. We can now finally compute the resulting representation z∼q(z|g(z∗,x)·x).
Notice that the whole operation is fully differentiable, thanks to the properties of the STN. The policy is can now
be trained by minimising Lagent in order to make z and z∗ as close as possible. In our experiments we train the
policy while training the main model.

A.4 Dataset processing

DM Lab We used an IMPALA agent trained on all DM-30 tasks [11] to generate data. We take
observations of this optimal agent (collecting rewards according to the task descriptions explained in
https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30),
on randomly generated episodes of Exploit Deferred Effects and NatLab Varying Map Randomized; storing them
as 111×84×3 RGB tensors. We crop the right-most 27 pixels out to obtain a 84×84 image (this retains the most
useful portion of the original view), which are finally scaled down to 64×64 (using tf.image.resize_area).

CelebA→ Inverse Fashion To make CelebA compatible with Fashion, we convert the CelebA images to
grayscale and extract a patch of size 32×32 centered on the face. We also invert the colours of Fashion so that
the images are black on a white background, and slightly reducing the contrast, in order to make the two datasets
more similar, and hence easier to confuse after mixing.

A.5 Quantifying catastrophic forgetting

We train on top of the representation z∼ qφ(z|x) a simple 2-hidden layers fully connected classifier with 256
hidden units per layer and ReLU activations. At each step while training the representation, we also train a
separate classifier on the representation for each environment, using Adam with learning rate 6e-4 and batch
size 64. This classifier training step does not update the weights in the main network.

For each ablation type we reported the average classification accuracy (or regression MSE) score obtained by
20 replicas of the model, all with the best set of hyperparameters discovered for the full model. We quantified
catastrophic forgetting by reporting the average difference between the maximum accuracy obtained while VASE
was training on a particular dataset and the minimum accuracy obtained for the dataset afterwards.

A.6 Additional results

We present additional experimental results and extra plots for the experiments reported in the main paper here.
Fig. 5 and table 3 show latent traversals and quantitative evaluation results for an ablation study on VASE trained
on the MNIST→ Fashion→MNIST sequence. Fig. 5 also shows traversals for VASE trained on the DM Lab
levels NatLab→ EDE. This is the model reported in section 4. Fig. 6 shows cross-dataset reconstructions for
VASE trained on the moving Fashion→MNIST→moving MNIST sequence described in the ablation study
in section 4. Figs. 7-8 shows latent traversals and cross-dataset reconstructions for VASE trained on the moving
MNIST→ Fashion→ inverted Fashion→MNIST→moving Fashion sequence described in the main text.
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Figure 5: Latent traversals for VASE trained on MNIST→ Fashion→MNIST, and DM Lab levels NatLab→
EDE.
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moving Fashion by the end of training.
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Figure 7: Latent traversals for VASE trained on a sequence of moving MNIST→ Fashion→ inverse Fashion→
MNIST→moving Fashion.
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DISENTANGLED ENTANGLED
CONFIGURATION AVG. DECREASE (%) AVG. MAX (%) AVG. DECREASE (%) AVG. MAX (%)
DA -7.9 90.5 -12.1 90.9
SD -2.2 91.0 -4.3 92.1
S -3.9 90.8 -8.4 91.5
A -9.6 90.2 -10.1 91.7
SA -5.9 90.0 -10.3 91.0
- -4.4 91.1 -6.6 92.6
D -6.0 90.5 -6.9 91.4
VASE (SDA) -0.9 90.3 -2.5 91.2

Table 3: Average drop in classification accuracy and maximum average accuracy when training an object classifier
on top of the learnt representation on the MNIST→ Fashion→MNIST sequence. We do a full ablation study of
VASE, where D - dreaming feedback loop, S - cluster inference q(s|xs), and A - atypicality based latent mask as

inference. We compare two versions of our model - one that is encouraged to learn a disentangled representation
through the capacity increase regularisation in eq. (3), and an entangled VAE baseline (β= 1). The unablated
disentangled version of VASE (SDA) has the best performance.
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Figure 8: Cross-domain reconstructions for the VASE trained on moving MNIST→ Fashion→ inverted Fashion
→MNIST→moving Fashion.
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