
Vol.:(0123456789)1 3

Applied Intelligence
https://doi.org/10.1007/s10489-021-02920-3

VARL: a variational autoencoder‑based reinforcement learning
Framework for vehicle routing problems

Qi Wang1

Received: 10 May 2021 / Accepted: 9 October 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
The vehicle routing problem as a classic NP-hard problem could be optimized by path choices due to its practical application
value. This study proposes a novel variational autoencoder framework for path optimization on graphs, involving graph neural
networks and generative adversarial networks. We took the center node as the root node to divide the graph into different
subgraphs and find the nodes that compose the optimal solution through variational reasoning. We next used reinforcement
learning to optimize the entire variational framework end-to-end. This contribution can also apply in both modeling and
training combinatorial optimization over graphs. An extensive experiment on different scales of traveling salesman and
vehicle routing instances was conducted. The findings indicate that our framework is efficient and effective in learning and
reasoning, and its accuracy and generalization outperform the baselines.

Keywords NP-hard problems · Machine learning · Reinforcement learning · Variational autoencoders · Variational
reasoning

1 Introduction

Combinatorial optimization, such as the traveling salesman
problem (TSP) [1] and the vehicle routing problem (VRP)
[2], has been studied for long periods. Recent research on
its traditional methods [3] (e.g., exact algorithms, approxi-
mation algorithms, and heuristic algorithms [4], etc.) failed
to take advantage of the fact that most combinatorial opti-
mization problems have similar internal structures and are
distinguished only by data and variables [5]. In many appli-
cations, the coefficients of the objective function or con-
straint are sampled from the same distribution. I hope to get
a general method to improve the efficiency and quality of
problem-solving, and the application of machine learning [6]
(including deep learning [7], reinforcement learning [8], and
so on) to combinatorial optimization should be a promising
direction from the current research trend [9].

Compared with the traditional optimization approach for
only one task, machine learning can automatically discover
features through training data, requiring less manual label

and expert experience. The model is more generalizable
and suitable for many optimization tasks. Deep reinforce-
ment learning is a new research field in machine learning,
which combines the perceptual ability of deep learning with
the decision-making ability of reinforcement learning, and
realizes direct control from original input to output through
end-to-end learning. Deep learning combines low-level fea-
tures to form more abstract high-level representation attrib-
utes, categories, or features through deep network structure
and nonlinear transformation to discover distributed feature
representation of data, which focuses on the perception
and expression of things. Reinforcement learning learns
the optimal policy to maximize the agent’s accumulative
reward from the environment and learn the policy to solve
the problem. Faced with increasingly complex real-world
tasks, researchers propose using input data representations
as a basis for self-improving reinforcement learning and then
combining deep learning and reinforcement learning to pro-
pose deep reinforcement learning. In recent years, deep rein-
forcement learning has led to a revolutionary breakthrough
in the field of artificial intelligence [10].

At present, there are still problems in the combination
optimization method based on machine learning. For exam-
ple, it is difficult for the RNN model to use the structural
information in the graph, so the logical reasoning ability is

 * Qi Wang
 17110240039@fudan.edu.cn

1 Shanghai Key Laboratory of Data Science, School
of Computer Science, Fudan University, Shanghai, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-021-02920-3&domain=pdf

 Q. Wang

1 3

weak, especially when the target node is not the direct neigh-
bor of the current node. It needs to be on the graph to per-
form logical reasoning to infer multi-hop neighbor nodes. In
the training stage, although reinforcement learning improves
the model’s generalization ability and solves the problem of
requiring a large amount of expensive label data, it is still
not as accurate as supervised learning in terms of training.
Reinforcement learning has sparse reward problems and
insufficient exploration space, especially in the early stage
of training [11]. Some researchers have applied a two-stage
training framework [12, 13] (supervised learning followed
by reinforcement learning) for the warm start. Still, com-
pared with the end-to-end paradigm, multi-stage training is
likely to lead to the cascade transmission of errors. The pre-
vious training will pass the errors to the later training, which
may be infinitely amplified. In addition, it is a challenge
to select an appropriate reinforcement learning algorithm
based on applied neural network modeling (continuous or
discrete actions).

The main methods include Monte Carlo Markov Chain
(MCMC) and Variational Inference (VI) are proposed to
solve reasoning. Since each step of MCMC training requires
large quantities of data, the training cost is very high, while
the variational inference can be trained with BP algorithm
and small-batch gradient descent, so the cost is lower. The
VAE is precisely on the development of variational reason-
ing. It inherits the idea of variational inference to use a dis-
tribution to approximate the posterior distribution [14]. The
difference is that VAE considers the posterior distribution
of all data simultaneously and approximates each posterior
distribution with distribution, minimizing KL divergence.
The VAE successfully applies neural networks to inference
problems and solves the problem of continuous data gen-
eration. In reasoning, it has the advantages of fast training
and low cost. The generation problem has the advantages of
fast training, high stability, high diversity, and so on [15].
In this paper, VRP is modeled as a variational probability
problem, consisting of two parts: prior and posterior prob-
abilities. We use the variational graph message network as
the graph encoder, take the graph as input, and update the
nodes and edges. I identify the central node in the graph and
use it as the root node to divide the whole graph into differ-
ent subgraphs. We propose the graph inference network to
determine the feasible solution composed of the sequence of
feasible nodes on each subgraph. We incorporated the GAN
into variational learning to make the optimization process
more efficient and robust and utilized REINFORCE with
variance reduction to train the whole framework.

In summary, the contributions of this paper are as follows:

• We are the first to employ the paradigm of variational
autoencoder to reason VRP instances on graphs, which

is more efficient, requires fewer label data, and can be
learned end-to-end.

• We identify the central node in the graph and use it as
the root to divide it into different subgraphs, equivalent
to transforming VRP into TSP. We can simultaneously
solve VRP and TSP and propose a novel graph inference
network to reason subgraphs.

• In the optimization process of variational learning, we
integrate the GAN to make the whole framework more
robust and efficient. Moreover, we combine REIN-
FORCE and variance reduction to train the framework
suitable for the variational reasoning framework.

The rest of this paper is organized as follows. Section 2
presents the related works of the paper. Section 3 describes
the proposed method and gives the details of its compo-
nents. Section 4 depicts the experimental results and relevant
analysis. Finally, Section 5 concludes the paper.

2 Literature review

The application of machine learning to combinatorial opti-
mization (CO) has gradually become a research hotspot in
recent years [16]. Especially the success of deep learning
and reinforcement learning in graph data makes it possible
to become another critical milestone in solving CO problems
[9].

Neural networks for modeling based on machine learn-
ing can be roughly divided into two types, namely models
based on RNN [17] or attention [18] and models based on
graph neural network (GNN) [19]. Moreover, their train-
ing methods can be divided into supervised learning and
unsupervised learning, in which reinforcement learning is
the mainstream at present [20]. Next, I will introduce some
representative works in recent years.

RNN or attention‑based models Applying neural networks
in CO can be traced back to the Hopfield network [21],
used to solve small-scale TSP. RNN is designed to handle
sequence information and can handle associations between
input variables. The encoder-decoder [22] is a kind of gen-
eral framework to solve the sequence-to-sequence problem.
The pointer network [23] is a neural architecture based on
a sequence-to-sequence network used to learn the condi-
tional probability of the output sequence. The elements are
discrete markers corresponding to the positions in the input
sequence. In general, the content of the output sequence of
the combinatorial optimization problem is the same as the
content of the input sequence. Still, the order of the sequence
is changed. Moreover, solving the CO problem involves
making sequence decisions, so the pointer network is a very

VARL: a variational autoencoder‑based reinforcement learning Framework for vehicle routing…

1 3

targeted neural network architecture for the combinatorial
optimization problem.

Bello et al. took the lead in trying to employ reinforce-
ment learning [24] (actor-critic framework [25]) to train
pointer networks to solve combinatorial optimization prob-
lems [26]. They explained that combinatorial optimization
problems often lack labeled data, and supervised learning
with enough labeled data cannot be generalized as reinforce-
ment learning only from experience and intuition.

Nazari et al. proposed an end-to-end framework for solv-
ing vehicle routing problems using reinforcement learning
based on pointer networks and [26], which can handle any
problem sampling from a given distribution, rather than
training individual models for each problem instance [27].
I can apply the framework if it approximates the generation
distribution, an extension of [26], and is more generalizable.
I can treat the model as a black box heuristic (or meta-algo-
rithm) that generates high-quality solutions in a reasonable
amount of time.

Kool et al. used a deterministic greedy rollout as a base-
line to guide the improved transformer [18] to learn the CO
algorithm [28]. The attention model they proposed also con-
sists of an encoder and a decoder, in which the encoder uses
a graph attention network (GAT) [29] with input as the coor-
dinate of each node and output as the representation of each
node, and the graph representation is the average embedded
value of all nodes. The decoder also uses GAT, and its input
is a combination of node embedding, context embedding,
start node embedding, and previous node embedding. The
output is a series of nodes with the highest compatibility,
then selected at each step to be added to the path. They
employ the mask to ensure the viability of the solution.

GNN‑based models Khalil et al. took the lead in using the
combination of reinforcement learning and GNN (struc-
ture2vec) to solve combinatorial optimization problems on
graphs [5]. The policy it learns resembles a meta-algorithm
that incrementally constructs a solution, and a graph embed-
ding determines the actions on the current state of the solu-
tion. Based on the graph structure, the feasible solution is
constructed by continuously greedily adding nodes, and the
feasible solutions are kept satisfying the graph constraint of
the problem.

Li et al. applied GCN [30] with supervised learning and
tree search to solve NP-hard problems [31]. Many classic
methods, such as local search and graph reduction, were
integrated into the deep learning framework, making it ele-
gant to use traditional deep learning to enable traditional
methods to solve classic problems. Based on [5] and [31],
Mittal et al. first applied the GCN to embed and aggregate
graph data and then applied supervised learning followed by

reinforcement learning to train the model [13]. Besides, they
employed a greedy probability distribution to preprocess
graphs so that the model could deal with large-scale graphs.

Ma et al. improved the pointer network into a GNN,
namely graph pointer network, combining the advantages
of both pointer network and GNN [32]. They applied hier-
archical reinforcement learning to train GNN in layers to
make model training more efficient. Duan et al. applied
attention and GCN to model the VRP jointly and applied
supervised learning and reinforcement learning to train the
whole framework [12]. They made GCN into the encoder-
decoder paradigm and used the pointer for sequence predic-
tion and edge classification, making the framework handle
graph and edge. There are similar recent works that combine
GNN and reinforcement learning for combinatorial optimi-
zation, such as [33–37], some of which also combine the
attention mechanism.

Besides, inspired by AlphaGo Zero [38], MuZero [39],
etc., there are now scholars who integrate GNN, reinforce-
ment learning, and Monte Carlo tree search to solve combi-
natorial optimization problems through self-play [40–42].
They take advantage of the fact that AlphaGo Zero does not
require expert experience. Still, these methods have a com-
mon problem: they require too much computing resources
and time to support model training, which is not sustainable
under standard experimental conditions.

Variational auto‑encoder With the rapid development
of machine learning [21], many complex scenarios have
attracted people’s attention in recent years. In these scenar-
ios, inference and training are often complex and costly [43].
On the one hand, many classical algorithms often have some
difficult conditions or too strong constraints during inference
and training, so these algorithms cannot meet the needs of
complex scenes [44]. On the other hand, due to the back-
propagation (BP) invention and maturity, small-batch gradi-
ent descent has become an efficient method with low training
costs [45]. Therefore, a natural development requirement is
an inference model that can be applied to complex scenarios
and trained with small batches of gradient descent. VAE
is the natural development of variational inference, which
combines the advantages of the ELBO and neural networks
to solve inference in general scenarios and the problem of
continuous data generation [14]. It has many advantages,
including fast training, stability, and so on, so it has a wide
range of theoretical models and industry applications.

3 Methodology

This section describes the proposed method in detail. We
first formally define the problem studied in Section 3.1 and
give the background knowledge of the proposed method. We

 Q. Wang

1 3

describe the proposed variational probability model for VRP
in Section 3.2, which includes three parts: the graph encoder,
the graph reasoning network, and the graph decoder. Then
in Section 3.3, we give the objective function of end-to-end
variational learning based on the previous graph neural net-
work. Finally, Section 3.4 proposed a novel reinforcement
learning algorithm for VRP.

3.1 Problem definition and background

A VRP instance can be represented by a directed fully-con-
nected graph G = (V ,E) with V = {0,… , n} , and E =

{
eij
}
 ,

where node i = 0 denotes the warehouse or the central node,
and i ∈ {1,… , n} are the customer nodes, eij(i, j ∈ V)
denotes the set of edges between nodes. Each node is associ-
ated with a feature vector xd

i
 , and each edge is associated

with a feature vector d′
ij
 , where xd

i
 represents the demand of

nodes and d′
ij
 represents the distance between two nodes.

Suppose there is a warehouse with k vehicles, the vehicle
capacity is Q , and each customer has a demand xd

i
 . The vehi-

cles start from the warehouse to deliver services to custom-
ers and then return to the warehouse. All customers must be
delivered, and each customer is delivered once, and the vehi-
cle capacity limit cannot be violated. The goal is to minimize
the total distance of all vehicle routes. In our model, we aim
to find a customer node sequence � = {�1,�2,�3,… ,�T} ,
where �t ∈ {v0, v1, v2,… , vn} , v0 = 0 may occur multiple
times, but other nodes can only occur once, so the sequence
between two “0” is the vehicle’s path. If there are only two
“0” in the sequence, it becomes a TSP where only one vehi-
cle traverses all customer nodes.

The objective function is as follows:

Where c is the fixed cost of a vehicle (including fuel fee,
driver’s remuneration, etc.), c′ is the unit cost of running.

Variational autoencoders VAE results from the combina-
tion of variational inference and neural networks. We first
introduce VAE’s ideological background: variational infer-
ence and ELBO. Typical data such as pictures, videos, audio,
etc., we often assume that it is generated by some lower-level
variables that satisfy certain distributions, called latent vari-
ables. These latent variables represent the internal structure
or abstraction of the data. Set the data variable as the first
and the latent variable as z , and then the general assumption
is the following generation model:

Where p(z) is the distribution of latent variables, known
as prior distribution; p(x|z) is assumed to be a specific

(1)minck + c�
∑T−1

t=1
d�
�t ,�t+1

(2)p(x, z) = p(z)p(x|z)

distribution, such as the Gaussian distribution. This assump-
tion enables the marginal distribution p(x) to fit the arbitrar-
ily smooth data distribution q(x).

A paradigm of the inference problem: Given a data x(i)
and assuming that the training has been completed such that
p(x) = q(x) , how can the posterior distribution p(z|x(i)) be
inferred? According to the Bayesian formula, we can get:

Variational inference and ELBO The variational inference
approximates the posterior distribution p(z|x(i)) with a dis-
tribution q(z) , specifically by minimizing the following KL
divergence:

Since logp
(
x(i)

)
 is an unknown constant, and we can

directly maximize the negative formula as follows:

The above expression is called ELBO (the Evidence
Lower Bound), the lower bound of log-evidence.

ELBO enables us to unify the training of the generation
model and the inference model. When training the genera-
tion model, maximizing the likelihood function is equiva-
lent to maximizing ELBO, and when training the inference
model, minimizing KL divergence is also equivalent to
maximizing ELBO.

VAE inherited the idea of variational inference to
approximate the posterior distribution with a distribution.
The difference is that VAE considers the posterior distri-
bution of all data at the same time and approximates each
posterior distribution with distribution, that is, minimizes
the following KL divergence:

Where L is the lower bound of the likelihood function,
and its specific form is:

3.2 The variational probabilistic model for VRPs

Previous machine learning-based methods [26, 28] typi-
cally define a stochastic policy p(�|s) for selecting the

(3)p
(
z|x(i)

)
=

p(z)p
(
x(i)||z)

p
(
x(i)

)

(4)
KL(q(z)||||p

(
z|x(i)

))
= Eq(z)

[
logq(z)

]
− Eq(z)

[
logp

(
z, x(i)

)]
+ logp

(
x(i)

)

(5)
ELBO(q(z)) = Eq(z)

[
logp

(
z, x(i)

)]
− Eq(z)

[
logq(z)

]
≤ logp

(
x(i)

)

(6)
∑N

i=1
KL

(
q
(
z|x(i)

)||| |p
(
z|x(i)

)
= −L +

∑N

i=1
logp

(
x(i)

)

(7)
L =

∑N

i=1
Eq(z|x(i))[−logq

(
z|x(i)

)
+ logp

(
z|x(i)

)
] ≤

∑N

i=1
logp

(
x(i)

)

VARL: a variational autoencoder‑based reinforcement learning Framework for vehicle routing…

1 3

solution set � on a given problem instance s , and it is
parameterized by � as:

The core idea of applying machine learning in combina-
torial optimization on the graph is to learn the probability
distribution of solutions through a given problem instance.
In our probability model, according to Eqs. (2) and (3), we
model the compatibility between solutions and instances as
a probability model P�1

(
�t
||s) , which represents the prob-

ability of a solution �t being obtained by a given instance s
in the graph.

We propose a novel propagation-like deep learning archi-
tecture on the graph to perform logical reasoning in a proba-
bilistic model. Given an instance s and its latent variables
�t , we need to reason on the graph to get the correct node vi
on the route �t , specifically, we need to simulate a sequence
of nodes vi in the given solution �t and the possibility
P�2

(
vi
||�t, s) of instance s , as the solution �t in the instance s

is not marked, so we naturally formulate a problem instance
s by regarding the solution �t as a latent variable. The prob-
ability that the node vi found in the simulation instance s is
correct can be obtained by summing up all the possibilities
of the latent variable:

Given a training data set Dtrain consisting of N optimal
paths, the parameters are �1 and �2 , and the objective func-
tion is:

Graph encoder Combinatorial optimization is usually based
on the encoder-decoder paradigm because we can obtain the
intrinsic structural features of the graph through the encoder
and operate the graph by the decoder, such as reasoning
and reconstruction. We first apply a graph messaging pass-
ing network [46] to encode a potential representation of G ,
where each vertex v has a feature vector xv to denote the
properties of the node. Similarly, each edge e has a feature
vector xe to maintain its information and the two hidden vec-
tors vij and vji represent information from the node vi to vj ,
and vice versa. Because of the loopy structure of graphs, the
message is exchanged in a loopy belief propagation mode:

Where v(t)
ij

 is the message calculated in the t − th itera-
tion, which is initialized with v(0)

ij
= 0 , N(i) represents a set

of neighbor nodes of a node vi . After iteration in T steps,

(8)p�(�|s) =
∏n

t=1
p�
(
�t
||s,�1∶t−1)

(9)
∑

vi∈V
P�1

(
�t
||s
)
P�2

(
vi|�t, s)

(10)max�1,�2
1

N

∑N

i=1
log

(∑
�∈V

P�1

(
�t
||s
)
P�2

(
vi|�t, s)

)

(11)v
(t)

ij
= �(W

g

1
xv +W

g

2
xe +W

g

3

∑
w∈N(i)�j

v
(t−1)

wi
)

we aggregate the message into a latent vector for each
vertex, which captures its local structure of the graph:

Where hG is the final graph representation, the log vari-
ance log�G of the variational posterior approximation and
the mean �G are computed from hG with two separate aff-
ine layers, zG is sampled from the Gaussian distribution
N(�G, �G).

In VRP, no matter how other variables change, the central
node is the core of the VRP and always exists objectively,
and it is not identified on the graph or in the training data. If
we take the graph as input, we feel it is necessary to identify
the center node because it marks the beginning and end of
all paths, but previous works often know the center node by
default and only match the center node with the “0” marker.
It is necessary to deal with instances and central nodes on
the graph to search and reason about each path from the
global and local information of the graph.

More specifically, previous works did not do anything
with problem instances, and the mapping from instances
to solutions relied on the corresponding expertise and
heuristics. However, in the practical application, the ideal
situation should be given a problem instance to get the
corresponding solution to achieve end-to-end learning and
optimization. Our framework is instance-oriented, creating
an automatic mapping from instance to solution (Fig. 1).
For example, if we input the above VRP instance, our
framework should identify the theme and find and reason
the optimal solution on the graph. If we input a variant
of VRP, such as the TSP instance, the framework will be
fine-tuned accordingly.

Since the central node in the Dtrain is not marked, the node
that needs to be identified will be treated as a latent variable.
The specific steps to identify the subject are as follows: (1)
The input instance s is first encoded then converted into a
vector with dimension d by using the neural network. (2)
Convert every node in the graph into a vector. (3) “ Softmax ”
is used to calculate the probability that each node in the
graph under s is a node in the instance. Specifically:

Where W is the parameter, and f (⋅) is a neural network
that embeds the vector. For example, when the instance
is text, RNN can be selected, while CNN can be selected
when it is an image. It is more practical for the traditional

(12)hi = �(U
g

1
xe +

∑
j∈N(i)

U
g

2
v
(T)

ij
)

(13)hG =
∑

i
hi∕|V|

(14)

P�1

�
�t�s

�
= softmax

�
WT

�t
f (s)

�
=

exp
�
WT

�t
f (s)

�

∑
��∈Vexp

�
WT

�t
� f
�
s))

 Q. Wang

1 3

combinatorial optimization method and can be generalized
to multiple application scenarios.

Graph reasoning network Applying parameterized inference
models is challenging because retrieving and reasoning the
optimal path requires multi-step traversal on a large graph.
Therefore, we propose a graph reasoning network (GRN) in
which all inference rules and their complex combinations are
represented as nonlinear embedding in a vector space and
are learned. We assume that the model knows the maximum
number of logical reasoning steps T , starting from the cen-
tral node, we perform a topological sort on all nodes in the T
hop according to the graph, and then we can get an ordered
list of nodes v1, v2, v3,… , vT.

Since there are no labeled reasoning rules in the whole
learning process of the framework, the rules (heuristics)
used in reasoning will be learned. The whole reasoning
process is shown as follows :(1) The instance s is encoded
through another network fG to transform it into a vector with
dimension d . (2) Applying GRN, i.e., the potential optimal

solution �t in the given range of G�t
 , we express G�t→vi

 as
the minimum subgraph, containing all paths traversed from
the central node and encodes the central node’s adjacent
nodes. (3) “ Softmax ” is used to calculate the probability that
the solution is the optimal solution of the instance through
reasoning. (4) If the reasoning does not reach the maximum
number of steps, the second step (2) is returned. The original
node adjacent to the center node is converted into the center
node to carry out the reasoning. The probability of using
GRN G�t→vi

 and range G�t
 to calculate the correctness of the

path is described below:

Where g
(
G�t→vi

)
 is the proposed GRN, a GNN that

resembles forward filtering in the Hidden Markov Model or
the Bayesian Network. The graph reasoning representation
of �t is computed recursively using its parent representation:

(15)

P�
2

�
vi��t, s

�
= softmax

�
fG(s)

Tg
�
G�t→vi

��

=
exp

�
fG(s)

Tg
�
G�t→vi

��

∑
v�
i
∈Vexp

�
fG(s)

Tg
�
G�t→v�

i

��

(16)g
(
G𝜋t→vi

)
=

1

𝜙
(
vi
)
∑

vj∈𝜙(vi),(vj,e,vi)or(vi,e,vj)∈G𝜋t

ReLU(W1 × [g
(
G𝜋t→vj

)
, �⃗e])

Fig. 1 The complete flow diagram of VARL. Our variational learning
framework follows the encoder-decoder paradigm. A graph is taken
as input, GNN is taken as graph encoder, and GRN divides the graph

into different sub-graphs with the central node as the root and reason-
ing. Finally, GAN and RL are used to optimize the whole framework

VARL: a variational autoencoder‑based reinforcement learning Framework for vehicle routing…

1 3

Where �⃗e is the embedding of edges, vj represents the par-
ent node of vi , W1 is the parameter, and �

(
vi
)
 counts the

number of parent nodes of vi in G�t
.

Graph decoder Previous work based on GNN to model
large-scale graph instances encountered the problem that the
model was too heavy to be trained due to too many param-
eters. Therefore, we must decompose the large-scale graph
into several small subgraphs and then use the divide and
conquer algorithm idea to process iteratively. In addition,
for the vehicle routing problem (VRP), we can divide the
graph into subgraphs based on the central node, which is
equivalent to transforming VRP into easier TSP so that the
learned data distribution is more refined.

Generalization We divide the graph into several subgraphs
according to the central node through graph encoding and
graph reasoning. Our goal here is to assemble the subgraphs
(nodes in the tree) into the original graph. We can regard
the subgraph as a tree structure rooted by the central node
and assemble a neighborhood graph to follow the order in
which the tree itself is decoded. In other words, we first look
at the scores of the central node and its neighbors. We then
proceed to assemble neighbors and their associated clusters,
and so on. Decoding is similar to the encoding step but with
different (learned) parameters:

(17)𝜇
(t)

ij
= 𝜏(Wd

1
xv +Wd

2
xe +Wd

3
�̃�
(t−1)

ij
)

We extend the model with a message m̂�i,�j
 via graph

encoder, which provides a subgraph-dependent location con-
text for bond(i, j).

3.3 End‑to‑end learning of VARL

According to the definition of variational reasoning and
ELBO as above, we optimize the ELBO and update the
objective function (10):

Where Q�

(
�t
||s, vi) is the variational posterior probability,

which can be learned together with the model. The posterior
distribution probability can reduce the approximation error.
Q� calculates the likelihood of the solution �t and the target
node vi for instance s . According to GRN, we define the
range Gvi→�t

 of the target node vi and the inverse reasoning
graph network g

(
Gvi→�t

)
 to calculate the embedding. The

variational posterior probability consists of two parts:

(18)�̃�
(t−1)

ij
=

� ∑
w∈N(i)�j𝜇

(t−1)

wi
, 𝛽i = 𝛽j

�m𝛽i,𝛽j
+
∑

w∈N(i)�j𝜇
(t−1)

wi
, 𝛽i ≠ 𝛽j

(19)
max�,�1,�2

L
(
�, �

1
, �

2

)

=
1

N

∑N

i=1
EQ�(�t|s,vi)[logP�1

(
�t|s

)
+ logP�2

(
vi|�t , s

)
− logQ�(�t|s, vi)]

(20)Q𝜌

(
𝜋t
||s, vi) ∝ exp(W̃T

𝜋t
f̃ (s) + f̃G(s)

Tg
(
Gvi→𝜋t

)
)

Fig. 2 The difference at the frame level between the standard VAE
(above) and the VAE with GAN (below), where �

1
 and �

2
 denote sam-

pling from the noise distribution. We added noise from the beginning

and made the optimization framework simpler to improve the frame-
work’s efficiency

 Q. Wang

1 3

Where W̃T
𝜋t

 , f̃G(s)
T are parameters and can be shared with

(14), (15).
Since Q�

(
�t
||s, vi) is usually selected as an easy-to-handle

distribution, which limits the flexibility of the model. We intro-
duce the generative adversarial network (GAN) to improve the

optimization effect and robustness of the model (Fig. 2). We
employ a latent way to express logP�1

(
�t|s

)
− logQ�

(
�t
||s, vi) ,

that is, the adversarial network T(s,�t) is introduced, so that its
optimal value is just logP�1

(
�t|s

)
− logQ�

(
�t
||s, vi) . Specifically,

we transform the optimization problem into the following form:

(21)maxTEPDtrain (x)
EQ�(�t|s,vi)log�

(
T
(
s,�t

))
+ EPDtrain (x)

Ep(�t)log(1 − �(T(s,�t)))

T(s,�t) is applied to determine whether the sample (s,�t)
comes from PDtrain(x)

Q�

(
�t|s, vi

)
 or PDtrain(x)

P
(
�t
)
 , according

to the optimal discriminant of GAN:

At this point, the objective function becomes:

The above optimization objective can easily obtain the
gradient for �2 , but � is more troublesome because T*

(
s,�t

)

is related to � . However, we have the following equation:

We apply the re-parametrization to turn the optimization
objective into:

Where � is the noise sampling, and the specific algorithm
flow is shown in Algorithm 1.

3.4 REINFORCE with variance reduction

The commonly used reinforcement learning algorithms in pre-
vious works include actor-critic algorithm [26], Q-learning [5],
REINFORCE [47]. However, it is not easy for the action-critic
algorithm to fully play its role, and Q-learning has limited explo-
ration space and cannot be used for continuous action. Kool et al.
and Duan et al. use a rollout baseline based on REINFORCE
[28, 12], but Monte Carlo sampling requires large quantities of
data in each training step. Therefore, we combine REINFORCE
and variance reduction [48] to train our variational model to
propose a more targeted and efficient reinforcement learning
algorithm (REINFORCE with variance reduction).

We assume that there is only one training instance, that
is, N = 1 , and the gradient of � with respect to the posterior
parameters of L can be calculated as:

(22)T*
(
s,�t

)
= logQ�

(
�t|s, vi

)
− P

(
�t
)

(23)
max�2,�EPDtrain (x)

EQ�(�t|s,vi)(−T
*
(
s,�t

)
+ logP�2

(
vi|�t, s

)
)

(24)EQ�(�t|s,vi)
(
∇�T

*
(
s,�t

))
= 0

(25)
max�2,�EPDtrain (x)

E�(−T
*
(
s,�t�(s, �)

)
+ logP�2

(s
|||�t�(s, �)

)
)

(26)∇�L = EQ�(�t|s,vi)
[
∇�logQ�

(
�t|s, vi)�(�t, s, vi)]

Where �
(
�t, s, vi

)
 serve as a learning signal in the policy

gradient. To reduce the variance of the gradient, we normalize
the signal �

(
�t, s, vi

)
 and subtract the baseline function b(s, vi)

[48], so the gradient can be approximately transformed into:

Where �̃� and �̃� estimate standard deviation and the mean
of �(�t, s, vi) with moving average.

Testing and reasoning In the process of reasoning and test-
ing, it would be too expensive to find the target node sequence
only through the problem instance and the following equation:

Therefore, we use the method of beam search to approx-
imate the solution. We select k candidate nodes from
P�1

(
�t
||s) based on the score (when k = 1 , it is a greedy

algorithm), and the final correct node is:

(27)
�
(
�t, s, vi

)
= logP�1

(
�t|s

)
+ logP2

(
vi|�t, s

)
− logQ�

(
�t
||s, vi)

(28)
∇𝜌L ≈

1

K

∑K

j=1
∇𝜌logQ𝜌

(
𝜋t
||s, vi)(

𝜔
(
𝜋t, s, vi

)
− �̃�

�̃�
− b(s, vi))

(29)argmaxlogP�2

(
vi
||�t, s

)
P�2

(
vi|�t, s)

(30)
v∗ = argmaxlogP�

2

(
vi|�t, s

)
, vi ∈ G�t

, �t ∈ {�
1
,�

2
,… ,�k}

VARL: a variational autoencoder‑based reinforcement learning Framework for vehicle routing…

1 3

4 Experiments

This section demonstrates results and the discussion of the
testing and reasoning and performs comparative analysis to
prove the proposed method’s effectiveness and efficiency.
We first introduced the data set used in the experiment and
the parameter settings in the method in Section 4.1. Then
we show the comparison of the effect of our method and the
baseline on the TSP instance and the VRP instance in Sec-
tion 4.2 and Section 4.3, respectively. Finally, in Section 4.4,
we show the learning curve of our method during training
and testing.

4.1 Data sets and Settings

As mentioned above, VARL can solve both TSP and (sim-
ple) VRP, so our experiment is conducted in both problem
instances. We employ generated data sets similar to previ-
ous methods [28]. The input form of the problem exam-
ple would be: “What is the shortest path for the vehicle to
leave from the central node and pass through each customer
node?”, “What is the shortest path set of N vehicles starting
from the central node passing through each customer node
and returning to the central node,” etc. Generally, the form
of problem instances of VRP is relatively fixed, so we only
need simple semantic matching to identify the topic of prob-
lems. So formally, our framework is relatively more flexible
than the previous one because it is problem-oriented rather
than designing heuristics based on the problem manually.

In the training phase of algorithm 1, we set the batch size
at 512, epoch at 100, and training steps as 2000. We apply
the Adam optimizer to update parameters and set the learn-
ing rate and learning rate delay at 10−3 and 0.96. The previ-
ous learning-based methods are primarily based on attention
mechanism and GNN, quite different from our model. We
choose some recent representative works as baselines, and
their experimental results are obtained from their papers.
Besides, we choose some heuristics-based methods [28],
such as LKH3, Concorde, OR-Tools, and Nearest Neighbor.

4.2 Experiments on TSP

TSP is a simple variant of VRP. In VARL, VRP is trans-
formed into TSP by subgraph decomposition, enabling it
to simultaneously solve two kinds of problems. In addition,
it can decompose large graphs into small graphs, which is
more conducive to solving large-scale instances.

We employ an evaluation method similar to [5] to evalu-
ate solution quality in test cases. We employ the approximate
ratio of various methods to the optimal solution, averaged
over the set of test cases. The approximation ratio of solution
�t t o p ro b l e m i n s t a n c e s i s d e n o t e d a s

Ra

(
�t, s

)
= Max(

OPT(s)

c(h(�t))
,
c(h(�t))

OPT(s)
) , where OPT(s) is the opti-

mal solution obtained by the solver and c
(
h
(
�t
))

 is the
objective value of solution �t . We select some state-of-the-
art learning-based methods (such as AM [28], S2V-DQN
[5], and PN-AC [26]) and traditional heuristic algorithms [5]
(such as 2-opt, Cheapest, and Nearest) as baselines. From
the experimental results in Fig. 3, we can see that the
approximate ratio of VARL on the small TSP is lower than
that of baselines.

Compared to traditional methods, the 2-opt algorithm
based on the improvement heuristic is far higher in solution
quality than the simple interpolation algorithms (Cheapest
and Nearest) based on the construction heuristic. The lat-
ter are also less competitive in the overall comparison. The
working principle of the improvement heuristic is to improve
the quality of the solution by giving an initial solution and
then continuously improving iteratively. The construction
heuristic aims to generate a complete solution from scratch.
Generally speaking, the quality of the final solution obtained
by the improvement heuristic algorithm is higher than that
of the construction heuristic algorithm. Still, the improve-
ment heuristic algorithm often depends on the quality of
the initial solution, so its generalization is weaker than that
of the construction heuristic. Our method and the selected
learning-based baseline are essentially learning construc-
tion heuristics. However, from the results, we can see that
the quality of the solution of VRL surpasses the traditional
improvement heuristic algorithm 2-opt and other learning-
based methods, which shows that our method effectively
learns the construction heuristic and the data distribution
in the TSP instance. Compared with multi-stage learning,
VARL uses an end-to-end training paradigm to avoid errors
caused by cascading propagation, which has a positive effect
on improving the accuracy of the solution. Besides, com-
pared to the encoder-decoder framework constructed by
applying attention and GNN, VARL seems to be inherently
suitable for processing hidden variables in the intermediate
process, which is more conducive to acceptable processing
variables in the modeling.

From Fig. 3, we can also see that in large-scale TSP
instances, VARL still has an advantage in the quality of the
solution. Reasoning on large-scale TSP instances is chal-
lenging because the complexity of the problem increases
geometrically as the number of nodes increases. Traditional
methods require a lot of trial and error and expertise and
cannot generalize, so designing a targeted heuristic algo-
rithm is expensive. The RNN-based and attention-based
approaches show significant performance degradation when
the problem size increases due to their inherent mechanisms.
For processing large-scale graphs, we can use our proposed
GRN and graph decoder to decompose it into sub-graphs
based on the identification of the central node and then

 Q. Wang

1 3

divide and process each sub-graph. It is much easier than
dealing with large-scale graphs directly. The advantage of
VARL is still in both the modeling and training methods, the
problem-specific encoding-decoding structure we designed,
the GNN processing and reasoning of the whole graph, GAN
and REINFORCE with variance reduction optimize the
whole framework end-to-end efficiently.

4.3 Experiments on VRP

We solve the more complex constrained path optimiza-
tion problem (CVRP) by following [27] to generate VRP
instances with nodes of 20, 50, 100, respectively, and
normalize the demand of each node depending on the
capacity. We assume that node locations and requirements
are randomly generated from a fixed distribution. The
warehouse and customers’ locations are randomly gener-
ated in a unit square [0,1] × [0,1] . For simplicity, let us
assume that the requirements for each customer point are
from {1,… , 9} , while we find any distribution, includ-
ing continuous distribution, can generate that customer
demand. In each decoding step, the vehicle selects the
node to visit in the next step from the graph. After visit-
ing the customer node vi , the demand and vehicle capacity
is updated as follows:

The above variables are defined in Section 3.1. Because
we use a messaging passing network (the information for
nodes and edges is updated iteratively over time) and a
problem instance-oriented mechanism. We can deal with
dynamic cases that change as time step t changes.

As shown in Table 1, VARL still has an advantage over
traditional and attention-based approaches addressing VRP.
VARL is more flexible and needs to change the correspond-
ing problem inputs and related variables to deal with more
complex VRP problems. Compared with the method based
solely on attention, VARL can better use the advantages
of GNN. It has a global and local view on the graph and
can better guide the agent to reason. In addition, the REIN-
FORCE with variance reduction in VARL is more efficient
than the REINFORCE with rollout baseline in AM, which
avoids a lot of Monte Carlo rollouts, and training the autoen-
coder is significantly lighter than training the transformer.

It is worth noting that the solution solver still main-
tains a high level in terms of its quality, especially the

(31)xd
i,t+1

= max(0, xd
i,t
− Qt)

(32)xd
j,t+1

= xd
j,t

(33)Qt+1 = max(0,Qt − xd
i,t
)

Fig. 3 The approximate ratio of
the VARL and baseline methods
results in the optimal solution
on small TSP instances

VARL: a variational autoencoder‑based reinforcement learning Framework for vehicle routing…

1 3

Lin-Kernighan-Helsgaun heuristic. However, solution
solvers like LKH3 [49] [50] are often based on improve-
ment heuristics, that is, to improve the quality of the solu-
tion by continuously improving the initial solution. It is
unfair to compare the improvement heuristic with the
construction heuristic of learning to construct a solution
from scratch. The former has already obtained at least one
feasible solution at the beginning of the test. In addition,
the time consumed by traditional heuristic algorithms on
small-scale problem instances is already too long, which
is unacceptable for large-scale problems in reality. For
the time complexity of traditional algorithms, there is
not much room for improvement. However, as long as
the learning-based method is well trained, after learning
the data distribution of a given problem, the time it takes
to test is much lower than traditional algorithms. More
importantly, learning-based methods are much higher than
traditional algorithms in terms of generalization because
the former can solve problems one-to-many. In contrast,
the latter can only solve problems one-to-one.

4.4 Effects of learning

Training effectiveness of learning-based methods is a
significant evaluation index, especially for reinforcement
learning methods, because different reinforcement learning
algorithms significantly impact training effectiveness. For
example, Q-learning is more suitable for a greedy algo-
rithm to deal with discrete actions, while REINFORCE is
more suitable for continuous actions. The training effect
of the reinforcement learning algorithm and space’s size
will be different due to different models or application sce-
narios. VARL also combines different components, such as
variational autoencoder, GAN, GNN. It is necessary to test
the learning effect of VARL, so we observe the comparison
between VARL and baselines in terms of convergence on
VRP100. Figure 4 visualizes the experimental results.

From the learning curve, we can see that the con-
vergence speed and learning robustness of VARL have
advantages over the baseline. Compared with GCN-NPEC
[12], its two-stage training strategy can make the model a
“warm start” initially. Still, the training loss will be back-
propagation, and the subsequent reinforcement learning
will lead to more and more errors, and its training method
is also the REINFORCE with rollout baseline. VARL uses
the end-to-end training method, and GAN is introduced to
assist optimization. Its training method is more efficient
and stable. From the perspective of the whole framework,
VARL is still much lighter than GCN-NPEC because
GCN-NPEC contains more GNN, so it is a heavy burden
for the joint training of multi-GNN.

We demonstrate in Fig. 5 the learning curve of using
reinforcement learning to train VRL on TSP20. The curve
describes the change in the agent’s rewards with increasing
time steps in each epoch. We selected the first five epochs
because we observed that the learning curve has stabilized
only after the first epoch, and the learning curve has con-
verged at the beginning of the first epoch. It shows that
our method can quickly converge on small-scale problem
instances and effectively learn the data distribution. Rein-
forcement learning is notoriously unstable, but we can see
that REINFORCE with variance reduction in VARL is effi-
cient from the learning curve.

5 Conclusions

In this paper, we apply variational learning to combinato-
rial optimization (CO) on graphs. Firstly, we define the
combinatorial optimization problem in the form of vari-
ational learning. We use the message passing network to
process the input graph. At the same time, we combine the
node information in the graph to identify the central node
(topic) in the problem instance and decompose the graph
into different sub-graphs with the central node as the root.
We propose a novel GNN (Graph Reasoning Network)
for reasoning on graphs and introduce GAN in variational
learning to improve efficiency and robustness. Finally,
we use REINFORCE with variance reduction to train the
entire framework. We introduce variational learning into
CO for the first time and prove that the fusion of each
component is appropriate.

Variational autoencoders are inherently equipped with
encoders and decoders, in line with the paradigm of solving
CO. The latent variables in variational learning can enable
the model to learn better data distribution. More importantly,
we can employ variational learning as a basic framework
to incorporate different efficient learning algorithms. In
the future, we will continue to explore the application and

Table.1 Comparison of model performance tested on different VRP
variants with different node numbers

Method n=20 n=50 n=100
Obj. Time Obj. Time Obj. Time

LKH3 6.14 2 h 10.38 7 h 15.65 13 h
OR Tools 6.43 - 11.31 - 17.16 -
Gurobi 6.10 - - - - -
PRL (greedy) 6.59 - 11.39 - 17.23 -
PRL (beam) 6.40 - 11.15 - 16.96 -
AM (greedy) 6.40 1 s 10.98 3 s 16.80 8 s
AM (sampling) 6.25 6 m 10.62 28 m 16.23 2 h
VARL 6.21 1 s 10.54 2 s 16.19 5 s

 Q. Wang

1 3

Fig. 4 The approximate ratio of
the VARL and baseline methods
results in the optimal solution
on VRP100

Fig. 5 We selected the first five
epochs of VARL training on
TSP20 and generated a curve
of the average route length
(reward value) obtained with
each epoch’s increment of the
time step

VARL: a variational autoencoder‑based reinforcement learning Framework for vehicle routing…

1 3

innovation of probabilistic graph model modeling and its
training method of CO on graphs.

Acknowledgements The author thanks Chunlei Tang, Ph.D., Yun
Xiong, Ph.D., and Yangyong Zhu, Ph.D., for valuable comments on
the early versions.

References

 1. Goyal S (2010) A survey on travelling salesman problem. Midwest
Instr. Comput. Symp. 1–9

 2. Alba E, Dorronsoro B (2008) Logistics: the vehicle routing prob-
lem, 175–186 https:// doi. org/ 10. 1007/ 978-0- 387- 77610-1_ 13

 3. Hsieh FS, Guo YH (2019) A discrete cooperatively coevolving
particle swarm optimization algorithm for combinatorial dou-
ble auctions. Appl Intell 49:3845–3863. https:// doi. org/ 10. 1007/
s10489- 019- 01556-8

 4. Zhang W, Gao K, Zhang W, Wang X, Zhang Q, Wang H (2019)
A hybrid clonal selection algorithm with modified combinatorial
recombination and success-history based adaptive mutation for
numerical optimization. Appl Intell 49:819–836. https:// doi. org/
10. 1007/ s10489- 018- 1291-2

 5. Dai H, Khalil EB, Zhang Y, Dilkina B, Song L (2017) Learning
combinatorial optimization algorithms over graphs. Adv Neural
Inf Process Syst :6349–6359

 6. Jordan MI, Mitchell TM (2015) Machine learning: Trends, per-
spectives, and prospects. Nature 349

 7. Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature
521:436–444. https:// doi. org/ 10. 1038/ natur e14539

 8. Mousavi SS, Schukat M, Howley E (2018) Deep reinforcement
learning: an overview. Lect Notes Netw Syst 16:426–440. https://
doi. org/ 10. 1007/ 978-3- 319- 56991-8_ 32

 9. Wang Q, Tang C (2021) Deep reinforcement learning for trans-
portation network combinatorial optimization: A survey. Knowl
Based Syst 233:107526. https:// doi. org/ 10. 1016/j. knosys. 2021.
107526

 10. Vinyals O, Babuschkin I, Czarnecki WM, Mathieu M, Dudzik A,
Chung J, Choi DH, Powell R, Ewalds T, Georgiev P, Oh J, Hor-
gan D, Kroiss M, Danihelka I, Huang A, Sifre L, Cai T, Agapiou
JP, Jaderberg M, Vezhnevets AS, Leblond R, Pohlen T, Dalibard
V, Budden D, Sulsky Y, Molloy J, Paine TL, Gulcehre C, Wang
Z, Pfaff T, Wu Y, Ring R, Yogatama D, Wünsch D, McKinney
K, Smith O, Schaul T, Lillicrap T, Kavukcuoglu K, Hassabis D,
Apps C, Silver D (2019) Grandmaster level in StarCraft II using
multi-agent reinforcement learning. Nature 575:350–354. https://
doi. org/ 10. 1038/ s41586- 019- 1724-z

 11. Ecoffet A, Huizinga J, Lehman J, Stanley KO, Clune J (2021) First
return, then explore. Nature 590:580–586. https:// doi. org/ 10. 1038/
s41586- 020- 03157-9

 12. Duan L, Zhan Y, Hu H, Gong Y, Wei J, Zhang X, Xu Y
(2020) Efficiently solving the practical vehicle routing problem:
a novel joint learning approach. Proc ACM SIGKDD Int Conf
Knowl Discov Data Min :3054–3063. https:// doi. org/ 10. 1145/
33944 86. 34033 56

 13. Manchanda S, Mittal A, Dhawan A, Medya S, Ranu S, Singh A
(2019) Learning Heuristics over Large Graphs via Deep Rein-
forcement Learning. http:// arxiv. org/ abs/ 1903. 03332

 14. Kingma DP, Welling M (2014) Auto-encoding variational bayes.
2nd Int. Conf. Learn. Represent. ICLR 2014 - Conf Track Proc
1–14

 15. Zhu D, Wang D, Cui P, Zhu W (2018) Deep variational network
embedding in wasserstein space. Proc ACM SIGKDD Int Conf

Knowl Discov Data Min 2827–2836. https:// doi. org/ 10. 1145/
32198 19. 32200 52

 16. Bengio Y, Lodi A, Prouvost A (2021) Machine learning for com-
binatorial optimization: A methodological tour d’horizon. Eur J
Oper Res 290:405–421. https:// doi. org/ 10. 1016/j. ejor. 2020. 07. 063

 17. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning rep-
resentations by back-propagating errors. Nature 323:533–536.
https:// doi. org/ 10. 1038/ 32353 3a0

 18. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez
AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need.
In: Advances in Neural Information Processing Systems, pp
5999–6009

 19. Xu K, Jegelka S, Hu W, Leskovec J (2019) How powerful are
graph neural networks? 7th Int. Conf. Learn. Represent. ICLR
2019

 20. Mazyavkina N, Sviridov S, Ivanov S, Burnaev E (2021) Rein-
forcement learning for combinatorial optimization: A survey.
Comput Oper Res 134:0–2. https:// doi. org/ 10. 1016/j. cor. 2021.
105400

 21. Hopfield JJ, Tank DW (1985) “Neural” computation of decisions
in optimization problems. Biol Cybern 52:141–152. https:// doi.
org/ 10. 1007/ BF003 39943

 22. Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence
learning with neural networks. Adv Neural Inf Process Syst
4:3104–3112

 23. Vinyals O, Fortunato M, Jaitly N (2015) Pointer networks. Adv
Neural Inf Process Syst, 2692–2700

 24. Ivanov S, D’yakonov A (2019) Modern deep reinforcement learn-
ing algorithms. arXiv.

 25. Bahdanau D, Brakel P, Xu K, Goyal A, Courville A, Pineau RLJ,
Bengio Y (2017) An actor-critic algorithm for sequence predic-
tion. 5th Int Conf Learn Represent ICLR 2017 - Conf Track Proc,
1–17

 26. Bello I, Pham H, Le QV, Norouzi M, Bengio S (2017) Neural
combinatorial optimization with reinforcement learning. 5th Int.
Conf. Learn. Represent. ICLR 2017 - Work. Track Proc, 1–15

 27. Nazari M, Oroojlooy A, Takáč M, Snyder LV (2018) Reinforce-
ment learning for solving the vehicle routing problem. Adv Neural
Inf Process Syst, 9839–9849

 28. Kool W, Van Hoof H, Welling M (2019) Attention, learn to solve
routing problems! 7th Int. Conf. Learn. Represent. ICLR 2019. 1–25

 29. Veličković P, Casanova A, Liò P, Cucurull G, Romero A, Bengio
Y (2018) Graph attention networks. 6th Int. Conf. Learn. Repre-
sent. ICLR 2018 - Conf. Track Proc, 1–12

 30. Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional
neural networks on graphs with fast localized spectral filtering.
Adv Neural Inf Process Syst, 3844–3852

 31. Li Z, Chen Q, Koltun V (2018) Combinatorial optimization with
graph convolutional networks and guided tree search. Adv Neural
Inf Process Syst, 539–548

 32. Ma Q, Ge S, He D, Thaker D, Drori I (2019) Combinatorial opti-
mization by Graph Pointer Networks and Hierarchical Reinforce-
ment Learning. arXiv

 33. Cappart Q, Goutierre E, Bergman D, Rousseau L-M
(2019) Improving optimization bounds using machine learning:
decision diagrams meet deep reinforcement learning. Proc AAAI
Conf Artif Intell 33:1443–1451. https:// doi. org/ 10. 1609/ aaai.
v33i01. 33011 443

 34. Yolcu E, Póczos B (2019) Learning local search heuristics for
Boolean satisfiability. NeurIPS, 7992–8003

 35. Barrett T, Clements W, Foerster J, Lvovsky A (2020) Exploratory
combinatorial optimization with reinforcement learning. https://
doi. org/ 10. 1609/ aaai. v34i04. 5723

 36. Beloborodov D, Ulanov AE, Foerster JN, Whiteson S, Lvovsky
AI (2021) Reinforcement learning enhanced quantum-inspired

https://doi.org/10.1007/978-0-387-77610-1_13
https://doi.org/10.1007/s10489-019-01556-8
https://doi.org/10.1007/s10489-019-01556-8
https://doi.org/10.1007/s10489-018-1291-2
https://doi.org/10.1007/s10489-018-1291-2
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/978-3-319-56991-8_32
https://doi.org/10.1007/978-3-319-56991-8_32
https://doi.org/10.1016/j.knosys.2021.107526
https://doi.org/10.1016/j.knosys.2021.107526
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-020-03157-9
https://doi.org/10.1038/s41586-020-03157-9
https://doi.org/10.1145/3394486.3403356
https://doi.org/10.1145/3394486.3403356
http://arxiv.org/abs/1903.03332
https://doi.org/10.1145/3219819.3220052
https://doi.org/10.1145/3219819.3220052
https://doi.org/10.1016/j.ejor.2020.07.063
https://doi.org/10.1038/323533a0
https://doi.org/10.1016/j.cor.2021.105400
https://doi.org/10.1016/j.cor.2021.105400
https://doi.org/10.1007/BF00339943
https://doi.org/10.1007/BF00339943
https://doi.org/10.1609/aaai.v33i01.33011443
https://doi.org/10.1609/aaai.v33i01.33011443
https://doi.org/10.1609/aaai.v34i04.5723
https://doi.org/10.1609/aaai.v34i04.5723

 Q. Wang

1 3

algorithm for combinatorial optimization. Mach Learn Sci Tech-
nol 2:025009. https:// doi. org/ 10. 1088/ 2632- 2153/ abc328

 37. Chen X, Tian Y (2019) Learning to perform local rewriting for
combinatorial optimization. Adv Neural Inf Process Syst 32

 38. Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A,
Guez A, Hubert T, Baker L, Lai M, Bolton A, Chen Y, Lillicrap
T, Hui F, Sifre L, Van Den Driessche G, Graepel T, Hassabis
D (2017) Mastering the game of Go without human knowledge.
Nature 550:354–359. https:// doi. org/ 10. 1038/ natur e24270

 39. Schrittwieser J, Antonoglou I, Hubert T, Simonyan K, Sifre L,
Schmitt S, Guez A, Lockhart E, Hassabis D, Graepel T, Lillicrap
T, Silver D (2020) Mastering Atari, Go, chess and shogi by plan-
ning with a learned model. Nature 588:604–609. https:// doi. org/
10. 1038/ s41586- 020- 03051-4

 40. Huang J, Patwary M, Diamos G (2019) Coloring big graphs with
AlphaGoZero. arXiv

 41. Wang Q, Hao Y, Cao J (2021) Learning to traverse over graphs with
a Monte Carlo tree search-based self-play framework. Eng Appl Artif
Intell 105:104422. https:// doi. org/ 10. 1016/j. engap pai. 2021. 104422.

 42. Laterre A, Fu Y, Jabri MK, Cohen A-S, Kas D, Hajjar K, Dahl TS,
Kerkeni A, Beguir K (2018) Ranked reward: enabling self-play
reinforcement learning for combinatorial optimization. arXiv

 43. Mansimov E, Parisotto E, Ba JL, Salakhutdinov R (2016) Gener-
ating images from captions with attention. 4th Int. Conf. Learn.
Represent. ICLR 2016 - Conf. Track Proc, 1–12

 44. Guu K, Hashimoto TB, Oren Y, Liang P (2017) Generating sentences
by editing prototypes. arXiv 2. https:// doi. org/ 10. 1162/ tacl_a_ 00030

 45. Mahdavi S, Khoshraftar S, An A (2020) Dynamic joint variational
graph autoencoders. Commun Comput Inf Sci 1167 CCIS:385–
401. https:// doi. org/ 10. 1007/ 978-3- 030- 43823-4_ 32

 46. Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE
(2017) Neural message passing for quantum chemistry. 34th Int.
Conf. Mach. Learn. ICML 3:2053–2070

 47. Willia RJ (1992) Simple statistical gradient-following algorithms
for connectionist reinforcement learning. Mach Learn 8:229–256.
https:// doi. org/ 10. 1023/A: 10226 72621 406

 48. Mnih A, Gregor K (2014) Neural variational inference and
learning in belief networks. 31st Int. Conf. Mach. Learn. ICML
5:3800–3809

 49. Zheng J, He K, Zhou J, Jin Y, Li C.-M (2020) Combining rein-
forcement learning with Lin-Kernighan-Helsgaun algorithm for
the traveling salesman problem. Assoc Adv Artif Intell

 50. Helsgaun K (2009) General k-opt submoves for the Lin-Kernighan
TSP heuristic. Math Program Comput 1:119–163. https:// doi. org/
10. 1007/ s12532- 009- 0004-6

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Qi Wang received a B.S. and M.Eng.
degree in software engineering
from Jilin University (Changchun
city) and Central South University
(Changsha city) in 2012 and 2016,
China, respectively. He is currently
pursuing a Ph.D. degree in software
engineering at the school of com-
puter science, Fudan University,
Shanghai, China.

His current research interests
include combinatorial optimization,
deep learning, and reinforcement
learning.

https://doi.org/10.1088/2632-2153/abc328
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1016/j.engappai.2021.104422
https://doi.org/10.1162/tacl_a_00030
https://doi.org/10.1007/978-3-030-43823-4_32
https://doi.org/10.1023/A:1022672621406
https://doi.org/10.1007/s12532-009-0004-6
https://doi.org/10.1007/s12532-009-0004-6

	VARL: a variational autoencoder-based reinforcement learning Framework for vehicle routing problems
	Abstract
	1 Introduction
	2 Literature review
	3 Methodology
	3.1 Problem definition and background
	3.2 The variational probabilistic model for VRPs
	3.3 End-to-end learning of VARL
	3.4 REINFORCE with variance reduction

	4 Experiments
	4.1 Data sets and Settings
	4.2 Experiments on TSP
	4.3 Experiments on VRP
	4.4 Effects of learning

	5 Conclusions
	Acknowledgements
	References

