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Abstract
The vehicle routing problem as a classic NP-hard problem could be optimized by path choices due to its practical application 
value. This study proposes a novel variational autoencoder framework for path optimization on graphs, involving graph neural 
networks and generative adversarial networks. We took the center node as the root node to divide the graph into different 
subgraphs and find the nodes that compose the optimal solution through variational reasoning. We next used reinforcement 
learning to optimize the entire variational framework end-to-end. This contribution can also apply in both modeling and 
training combinatorial optimization over graphs. An extensive experiment on different scales of traveling salesman and 
vehicle routing instances was conducted. The findings indicate that our framework is efficient and effective in learning and 
reasoning, and its accuracy and generalization outperform the baselines.

Keywords NP-hard problems · Machine learning · Reinforcement learning · Variational autoencoders · Variational 
reasoning

1 Introduction

Combinatorial optimization, such as the traveling salesman 
problem (TSP) [1] and the vehicle routing problem (VRP) 
[2], has been studied for long periods. Recent research on 
its traditional methods [3] (e.g., exact algorithms, approxi-
mation algorithms, and heuristic algorithms [4], etc.) failed 
to take advantage of the fact that most combinatorial opti-
mization problems have similar internal structures and are 
distinguished only by data and variables [5]. In many appli-
cations, the coefficients of the objective function or con-
straint are sampled from the same distribution. I hope to get 
a general method to improve the efficiency and quality of 
problem-solving, and the application of machine learning [6] 
(including deep learning [7], reinforcement learning [8], and 
so on) to combinatorial optimization should be a promising 
direction from the current research trend [9].

Compared with the traditional optimization approach for 
only one task, machine learning can automatically discover 
features through training data, requiring less manual label 

and expert experience. The model is more generalizable 
and suitable for many optimization tasks. Deep reinforce-
ment learning is a new research field in machine learning, 
which combines the perceptual ability of deep learning with 
the decision-making ability of reinforcement learning, and 
realizes direct control from original input to output through 
end-to-end learning. Deep learning combines low-level fea-
tures to form more abstract high-level representation attrib-
utes, categories, or features through deep network structure 
and nonlinear transformation to discover distributed feature 
representation of data, which focuses on the perception 
and expression of things. Reinforcement learning learns 
the optimal policy to maximize the agent’s accumulative 
reward from the environment and learn the policy to solve 
the problem. Faced with increasingly complex real-world 
tasks, researchers propose using input data representations 
as a basis for self-improving reinforcement learning and then 
combining deep learning and reinforcement learning to pro-
pose deep reinforcement learning. In recent years, deep rein-
forcement learning has led to a revolutionary breakthrough 
in the field of artificial intelligence [10].

At present, there are still problems in the combination 
optimization method based on machine learning. For exam-
ple, it is difficult for the RNN model to use the structural 
information in the graph, so the logical reasoning ability is 

 * Qi Wang 
 17110240039@fudan.edu.cn

1 Shanghai Key Laboratory of Data Science, School 
of Computer Science, Fudan University, Shanghai, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-021-02920-3&domain=pdf


 Q. Wang 

1 3

weak, especially when the target node is not the direct neigh-
bor of the current node. It needs to be on the graph to per-
form logical reasoning to infer multi-hop neighbor nodes. In 
the training stage, although reinforcement learning improves 
the model’s generalization ability and solves the problem of 
requiring a large amount of expensive label data, it is still 
not as accurate as supervised learning in terms of training. 
Reinforcement learning has sparse reward problems and 
insufficient exploration space, especially in the early stage 
of training [11]. Some researchers have applied a two-stage 
training framework [12, 13] (supervised learning followed 
by reinforcement learning) for the warm start. Still, com-
pared with the end-to-end paradigm, multi-stage training is 
likely to lead to the cascade transmission of errors. The pre-
vious training will pass the errors to the later training, which 
may be infinitely amplified. In addition, it is a challenge 
to select an appropriate reinforcement learning algorithm 
based on applied neural network modeling (continuous or 
discrete actions).

The main methods include Monte Carlo Markov Chain 
(MCMC) and Variational Inference (VI) are proposed to 
solve reasoning. Since each step of MCMC training requires 
large quantities of data, the training cost is very high, while 
the variational inference can be trained with BP algorithm 
and small-batch gradient descent, so the cost is lower. The 
VAE is precisely on the development of variational reason-
ing. It inherits the idea of variational inference to use a dis-
tribution to approximate the posterior distribution [14]. The 
difference is that VAE considers the posterior distribution 
of all data simultaneously and approximates each posterior 
distribution with distribution, minimizing KL divergence. 
The VAE successfully applies neural networks to inference 
problems and solves the problem of continuous data gen-
eration. In reasoning, it has the advantages of fast training 
and low cost. The generation problem has the advantages of 
fast training, high stability, high diversity, and so on [15]. 
In this paper, VRP is modeled as a variational probability 
problem, consisting of two parts: prior and posterior prob-
abilities. We use the variational graph message network as 
the graph encoder, take the graph as input, and update the 
nodes and edges. I identify the central node in the graph and 
use it as the root node to divide the whole graph into differ-
ent subgraphs. We propose the graph inference network to 
determine the feasible solution composed of the sequence of 
feasible nodes on each subgraph. We incorporated the GAN 
into variational learning to make the optimization process 
more efficient and robust and utilized REINFORCE with 
variance reduction to train the whole framework.

In summary, the contributions of this paper are as follows:

• We are the first to employ the paradigm of variational 
autoencoder to reason VRP instances on graphs, which 

is more efficient, requires fewer label data, and can be 
learned end-to-end.

• We identify the central node in the graph and use it as 
the root to divide it into different subgraphs, equivalent 
to transforming VRP into TSP. We can simultaneously 
solve VRP and TSP and propose a novel graph inference 
network to reason subgraphs.

• In the optimization process of variational learning, we 
integrate the GAN to make the whole framework more 
robust and efficient. Moreover, we combine REIN-
FORCE and variance reduction to train the framework 
suitable for the variational reasoning framework.

The rest of this paper is organized as follows. Section 2 
presents the related works of the paper. Section 3 describes 
the proposed method and gives the details of its compo-
nents. Section 4 depicts the experimental results and relevant 
analysis. Finally, Section 5 concludes the paper.

2  Literature review

The application of machine learning to combinatorial opti-
mization (CO) has gradually become a research hotspot in 
recent years [16]. Especially the success of deep learning 
and reinforcement learning in graph data makes it possible 
to become another critical milestone in solving CO problems 
[9].

Neural networks for modeling based on machine learn-
ing can be roughly divided into two types, namely models 
based on RNN [17] or attention [18] and models based on 
graph neural network (GNN) [19]. Moreover, their train-
ing methods can be divided into supervised learning and 
unsupervised learning, in which reinforcement learning is 
the mainstream at present [20]. Next, I will introduce some 
representative works in recent years.

RNN or attention‑based models Applying neural networks 
in CO can be traced back to the Hopfield network [21], 
used to solve small-scale TSP. RNN is designed to handle 
sequence information and can handle associations between 
input variables. The encoder-decoder [22] is a kind of gen-
eral framework to solve the sequence-to-sequence problem. 
The pointer network [23] is a neural architecture based on 
a sequence-to-sequence network used to learn the condi-
tional probability of the output sequence. The elements are 
discrete markers corresponding to the positions in the input 
sequence. In general, the content of the output sequence of 
the combinatorial optimization problem is the same as the 
content of the input sequence. Still, the order of the sequence 
is changed. Moreover, solving the CO problem involves 
making sequence decisions, so the pointer network is a very 
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targeted neural network architecture for the combinatorial 
optimization problem.

Bello et al. took the lead in trying to employ reinforce-
ment learning [24] (actor-critic framework [25]) to train 
pointer networks to solve combinatorial optimization prob-
lems [26]. They explained that combinatorial optimization 
problems often lack labeled data, and supervised learning 
with enough labeled data cannot be generalized as reinforce-
ment learning only from experience and intuition.

Nazari et al. proposed an end-to-end framework for solv-
ing vehicle routing problems using reinforcement learning 
based on pointer networks and [26], which can handle any 
problem sampling from a given distribution, rather than 
training individual models for each problem instance [27]. 
I can apply the framework if it approximates the generation 
distribution, an extension of [26], and is more generalizable. 
I can treat the model as a black box heuristic (or meta-algo-
rithm) that generates high-quality solutions in a reasonable 
amount of time.

Kool et al. used a deterministic greedy rollout as a base-
line to guide the improved transformer [18] to learn the CO 
algorithm [28]. The attention model they proposed also con-
sists of an encoder and a decoder, in which the encoder uses 
a graph attention network (GAT) [29] with input as the coor-
dinate of each node and output as the representation of each 
node, and the graph representation is the average embedded 
value of all nodes. The decoder also uses GAT, and its input 
is a combination of node embedding, context embedding, 
start node embedding, and previous node embedding. The 
output is a series of nodes with the highest compatibility, 
then selected at each step to be added to the path. They 
employ the mask to ensure the viability of the solution.

GNN‑based models Khalil et al. took the lead in using the 
combination of reinforcement learning and GNN (struc-
ture2vec) to solve combinatorial optimization problems on 
graphs [5]. The policy it learns resembles a meta-algorithm 
that incrementally constructs a solution, and a graph embed-
ding determines the actions on the current state of the solu-
tion. Based on the graph structure, the feasible solution is 
constructed by continuously greedily adding nodes, and the 
feasible solutions are kept satisfying the graph constraint of 
the problem.

Li et al. applied GCN [30] with supervised learning and 
tree search to solve NP-hard problems [31]. Many classic 
methods, such as local search and graph reduction, were 
integrated into the deep learning framework, making it ele-
gant to use traditional deep learning to enable traditional 
methods to solve classic problems. Based on [5] and [31], 
Mittal et al. first applied the GCN to embed and aggregate 
graph data and then applied supervised learning followed by 

reinforcement learning to train the model [13]. Besides, they 
employed a greedy probability distribution to preprocess 
graphs so that the model could deal with large-scale graphs.

Ma et al. improved the pointer network into a GNN, 
namely graph pointer network, combining the advantages 
of both pointer network and GNN [32]. They applied hier-
archical reinforcement learning to train GNN in layers to 
make model training more efficient. Duan et al. applied 
attention and GCN to model the VRP jointly and applied 
supervised learning and reinforcement learning to train the 
whole framework [12]. They made GCN into the encoder-
decoder paradigm and used the pointer for sequence predic-
tion and edge classification, making the framework handle 
graph and edge. There are similar recent works that combine 
GNN and reinforcement learning for combinatorial optimi-
zation, such as [33–37], some of which also combine the 
attention mechanism.

Besides, inspired by AlphaGo Zero [38], MuZero [39], 
etc., there are now scholars who integrate GNN, reinforce-
ment learning, and Monte Carlo tree search to solve combi-
natorial optimization problems through self-play [40–42]. 
They take advantage of the fact that AlphaGo Zero does not 
require expert experience. Still, these methods have a com-
mon problem: they require too much computing resources 
and time to support model training, which is not sustainable 
under standard experimental conditions.

Variational auto‑encoder With the rapid development 
of machine learning [21], many complex scenarios have 
attracted people’s attention in recent years. In these scenar-
ios, inference and training are often complex and costly [43]. 
On the one hand, many classical algorithms often have some 
difficult conditions or too strong constraints during inference 
and training, so these algorithms cannot meet the needs of 
complex scenes [44]. On the other hand, due to the back-
propagation (BP) invention and maturity, small-batch gradi-
ent descent has become an efficient method with low training 
costs [45]. Therefore, a natural development requirement is 
an inference model that can be applied to complex scenarios 
and trained with small batches of gradient descent. VAE 
is the natural development of variational inference, which 
combines the advantages of the ELBO and neural networks 
to solve inference in general scenarios and the problem of 
continuous data generation [14]. It has many advantages, 
including fast training, stability, and so on, so it has a wide 
range of theoretical models and industry applications.

3  Methodology

This section describes the proposed method in detail. We 
first formally define the problem studied in Section 3.1 and 
give the background knowledge of the proposed method. We 
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describe the proposed variational probability model for VRP 
in Section 3.2, which includes three parts: the graph encoder, 
the graph reasoning network, and the graph decoder. Then 
in Section 3.3, we give the objective function of end-to-end 
variational learning based on the previous graph neural net-
work. Finally, Section 3.4 proposed a novel reinforcement 
learning algorithm for VRP.

3.1  Problem definition and background

A VRP instance can be represented by a directed fully-con-
nected graph G = (V ,E) with V = {0,… , n} , and E =

{
eij
}
 , 

where node i = 0 denotes the warehouse or the central node, 
and i ∈ {1,… , n} are the customer nodes, eij(i, j ∈ V) 
denotes the set of edges between nodes. Each node is associ-
ated with a feature vector xd

i
 , and each edge is associated 

with a feature vector d′
ij
 , where xd

i
 represents the demand of 

nodes and d′
ij
 represents the distance between two nodes.

Suppose there is a warehouse with k vehicles, the vehicle 
capacity is Q , and each customer has a demand xd

i
 . The vehi-

cles start from the warehouse to deliver services to custom-
ers and then return to the warehouse. All customers must be 
delivered, and each customer is delivered once, and the vehi-
cle capacity limit cannot be violated. The goal is to minimize 
the total distance of all vehicle routes. In our model, we aim 
to find a customer node sequence � = {�1,�2,�3,… ,�T} , 
where �t ∈ {v0, v1, v2,… , vn} , v0 = 0 may occur multiple 
times, but other nodes can only occur once, so the sequence 
between two “0” is the vehicle’s path. If there are only two 
“0” in the sequence, it becomes a TSP where only one vehi-
cle traverses all customer nodes.

The objective function is as follows:

Where c is the fixed cost of a vehicle (including fuel fee, 
driver’s remuneration, etc.), c′ is the unit cost of running.

Variational autoencoders VAE results from the combina-
tion of variational inference and neural networks. We first 
introduce VAE’s ideological background: variational infer-
ence and ELBO. Typical data such as pictures, videos, audio, 
etc., we often assume that it is generated by some lower-level 
variables that satisfy certain distributions, called latent vari-
ables. These latent variables represent the internal structure 
or abstraction of the data. Set the data variable as the first 
and the latent variable as z , and then the general assumption 
is the following generation model:

Where p(z) is the distribution of latent variables, known 
as prior distribution; p(x|z) is assumed to be a specific 

(1)minck + c�
∑T−1

t=1
d�
�t ,�t+1

(2)p(x, z) = p(z)p(x|z)

distribution, such as the Gaussian distribution. This assump-
tion enables the marginal distribution p(x) to fit the arbitrar-
ily smooth data distribution q(x).

A paradigm of the inference problem: Given a data x(i) 
and assuming that the training has been completed such that 
p(x) = q(x) , how can the posterior distribution p(z|x(i)) be 
inferred? According to the Bayesian formula, we can get:

Variational inference and ELBO The variational inference 
approximates the posterior distribution p(z|x(i)) with a dis-
tribution q(z) , specifically by minimizing the following KL 
divergence:

Since logp
(
x(i)

)
 is an unknown constant, and we can 

directly maximize the negative formula as follows:

The above expression is called ELBO (the Evidence 
Lower Bound), the lower bound of log-evidence.

ELBO enables us to unify the training of the generation 
model and the inference model. When training the genera-
tion model, maximizing the likelihood function is equiva-
lent to maximizing ELBO, and when training the inference 
model, minimizing KL divergence is also equivalent to 
maximizing ELBO.

VAE inherited the idea of variational inference to 
approximate the posterior distribution with a distribution. 
The difference is that VAE considers the posterior distri-
bution of all data at the same time and approximates each 
posterior distribution with distribution, that is, minimizes 
the following KL divergence:

Where L is the lower bound of the likelihood function, 
and its specific form is:

3.2  The variational probabilistic model for VRPs

Previous machine learning-based methods [26, 28] typi-
cally define a stochastic policy p(�|s) for selecting the 

(3)p
(
z|x(i)

)
=

p(z)p
(
x(i)||z)

p
(
x(i)

)

(4)
KL(q( z )||||p

(
z|x(i)

))
= Eq(z)

[
logq(z)

]
− Eq(z)

[
logp

(
z, x(i)

)]
+ logp

(
x(i)

)

(5)
ELBO(q(z)) = Eq(z)

[
logp

(
z, x(i)

)]
− Eq(z)

[
logq(z)

]
≤ logp

(
x(i)

)

(6)
∑N

i=1
KL

(
q
(
z|x(i)

)||| |p
(
z|x(i)

)
= −L +

∑N

i=1
logp

(
x(i)

)

(7)
L =

∑N

i=1
Eq(z|x(i))[−logq

(
z|x(i)

)
+ logp

(
z|x(i)

)
] ≤

∑N

i=1
logp

(
x(i)

)
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solution set � on a given problem instance s , and it is 
parameterized by � as:

The core idea of applying machine learning in combina-
torial optimization on the graph is to learn the probability 
distribution of solutions through a given problem instance. 
In our probability model, according to Eqs. (2) and (3), we 
model the compatibility between solutions and instances as 
a probability model P�1

(
�t
||s) , which represents the prob-

ability of a solution �t being obtained by a given instance s 
in the graph.

We propose a novel propagation-like deep learning archi-
tecture on the graph to perform logical reasoning in a proba-
bilistic model. Given an instance s and its latent variables 
�t , we need to reason on the graph to get the correct node vi 
on the route �t , specifically, we need to simulate a sequence 
of nodes vi in the given solution �t and the possibility 
P�2

(
vi
||�t, s) of instance s , as the solution �t in the instance s 

is not marked, so we naturally formulate a problem instance 
s by regarding the solution �t as a latent variable. The prob-
ability that the node vi found in the simulation instance s is 
correct can be obtained by summing up all the possibilities 
of the latent variable:

Given a training data set Dtrain consisting of N optimal 
paths, the parameters are �1 and �2 , and the objective func-
tion is:

Graph encoder Combinatorial optimization is usually based 
on the encoder-decoder paradigm because we can obtain the 
intrinsic structural features of the graph through the encoder 
and operate the graph by the decoder, such as reasoning 
and reconstruction. We first apply a graph messaging pass-
ing network [46] to encode a potential representation of G , 
where each vertex v has a feature vector xv to denote the 
properties of the node. Similarly, each edge e has a feature 
vector xe to maintain its information and the two hidden vec-
tors vij and vji represent information from the node vi to vj , 
and vice versa. Because of the loopy structure of graphs, the 
message is exchanged in a loopy belief propagation mode:

Where v(t)
ij

 is the message calculated in the t − th itera-
tion, which is initialized with v(0)

ij
= 0 , N(i) represents a set 

of neighbor nodes of a node vi . After iteration in T  steps, 

(8)p�(�|s) =
∏n

t=1
p�
(
�t
||s,�1∶t−1)

(9)
∑

vi∈V
P�1

(
�t
||s
)
P�2

(
vi|�t, s)

(10)max�1,�2
1

N

∑N

i=1
log

(∑
�∈V

P�1

(
�t
||s
)
P�2

(
vi|�t, s)

)

(11)v
(t)

ij
= �(W

g

1
xv +W

g

2
xe +W

g

3

∑
w∈N(i)�j

v
(t−1)

wi
)

we aggregate the message into a latent vector for each 
vertex, which captures its local structure of the graph:

Where hG is the final graph representation, the log vari-
ance log�G of the variational posterior approximation and 
the mean �G are computed from hG with two separate aff-
ine layers, zG is sampled from the Gaussian distribution 
N(�G, �G).

In VRP, no matter how other variables change, the central 
node is the core of the VRP and always exists objectively, 
and it is not identified on the graph or in the training data. If 
we take the graph as input, we feel it is necessary to identify 
the center node because it marks the beginning and end of 
all paths, but previous works often know the center node by 
default and only match the center node with the “0” marker. 
It is necessary to deal with instances and central nodes on 
the graph to search and reason about each path from the 
global and local information of the graph.

More specifically, previous works did not do anything 
with problem instances, and the mapping from instances 
to solutions relied on the corresponding expertise and 
heuristics. However, in the practical application, the ideal 
situation should be given a problem instance to get the 
corresponding solution to achieve end-to-end learning and 
optimization. Our framework is instance-oriented, creating 
an automatic mapping from instance to solution (Fig. 1). 
For example, if we input the above VRP instance, our 
framework should identify the theme and find and reason 
the optimal solution on the graph. If we input a variant 
of VRP, such as the TSP instance, the framework will be 
fine-tuned accordingly.

Since the central node in the Dtrain is not marked, the node 
that needs to be identified will be treated as a latent variable. 
The specific steps to identify the subject are as follows: (1) 
The input instance s is first encoded then converted into a 
vector with dimension d by using the neural network. (2) 
Convert every node in the graph into a vector. (3) “ Softmax ” 
is used to calculate the probability that each node in the 
graph under s is a node in the instance. Specifically:

Where W  is the parameter, and f (⋅) is a neural network 
that embeds the vector. For example, when the instance 
is text, RNN can be selected, while CNN can be selected 
when it is an image. It is more practical for the traditional 

(12)hi = �(U
g

1
xe +

∑
j∈N(i)

U
g

2
v
(T)

ij
)

(13)hG =
∑

i
hi∕|V|

(14)

P�1

�
�t�s

�
= softmax

�
WT

�t
f (s)

�
=

exp
�
WT

�t
f (s)

�

∑
��∈Vexp

�
WT

�t
� f
�
s))
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combinatorial optimization method and can be generalized 
to multiple application scenarios.

Graph reasoning network Applying parameterized inference 
models is challenging because retrieving and reasoning the 
optimal path requires multi-step traversal on a large graph. 
Therefore, we propose a graph reasoning network (GRN) in 
which all inference rules and their complex combinations are 
represented as nonlinear embedding in a vector space and 
are learned. We assume that the model knows the maximum 
number of logical reasoning steps T  , starting from the cen-
tral node, we perform a topological sort on all nodes in the T  
hop according to the graph, and then we can get an ordered 
list of nodes v1, v2, v3,… , vT.

Since there are no labeled reasoning rules in the whole 
learning process of the framework, the rules (heuristics) 
used in reasoning will be learned. The whole reasoning 
process is shown as follows :(1) The instance s is encoded 
through another network fG to transform it into a vector with 
dimension d . (2) Applying GRN, i.e., the potential optimal 

solution �t in the given range of G�t
 , we express G�t→vi

 as 
the minimum subgraph, containing all paths traversed from 
the central node and encodes the central node’s adjacent 
nodes. (3) “ Softmax ” is used to calculate the probability that 
the solution is the optimal solution of the instance through 
reasoning. (4) If the reasoning does not reach the maximum 
number of steps, the second step (2) is returned. The original 
node adjacent to the center node is converted into the center 
node to carry out the reasoning. The probability of using 
GRN G�t→vi

 and range G�t
 to calculate the correctness of the 

path is described below:

Where g
(
G�t→vi

)
 is the proposed GRN, a GNN that 

resembles forward filtering in the Hidden Markov Model or 
the Bayesian Network. The graph reasoning representation 
of �t is computed recursively using its parent representation:

(15)

P�
2

�
vi��t, s

�
= softmax

�
fG(s)

Tg
�
G�t→vi

��

=
exp

�
fG(s)

Tg
�
G�t→vi

��

∑
v�
i
∈Vexp

�
fG(s)

Tg
�
G�t→v�

i

��

(16)g
(
G𝜋t→vi

)
=

1

𝜙
(
vi
)
∑

vj∈𝜙(vi),(vj,e,vi)or(vi,e,vj)∈G𝜋t

ReLU(W1 × [g
(
G𝜋t→vj

)
, �⃗e])

Fig. 1  The complete flow diagram of VARL. Our variational learning 
framework follows the encoder-decoder paradigm. A graph is taken 
as input, GNN is taken as graph encoder, and GRN divides the graph 

into different sub-graphs with the central node as the root and reason-
ing. Finally, GAN and RL are used to optimize the whole framework
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Where �⃗e is the embedding of edges, vj represents the par-
ent node of vi , W1 is the parameter, and �

(
vi
)
 counts the 

number of parent nodes of vi in G�t
.

Graph decoder Previous work based on GNN to model 
large-scale graph instances encountered the problem that the 
model was too heavy to be trained due to too many param-
eters. Therefore, we must decompose the large-scale graph 
into several small subgraphs and then use the divide and 
conquer algorithm idea to process iteratively. In addition, 
for the vehicle routing problem (VRP), we can divide the 
graph into subgraphs based on the central node, which is 
equivalent to transforming VRP into easier TSP so that the 
learned data distribution is more refined.

Generalization We divide the graph into several subgraphs 
according to the central node through graph encoding and 
graph reasoning. Our goal here is to assemble the subgraphs 
(nodes in the tree) into the original graph. We can regard 
the subgraph as a tree structure rooted by the central node 
and assemble a neighborhood graph to follow the order in 
which the tree itself is decoded. In other words, we first look 
at the scores of the central node and its neighbors. We then 
proceed to assemble neighbors and their associated clusters, 
and so on. Decoding is similar to the encoding step but with 
different (learned) parameters:

(17)𝜇
(t)

ij
= 𝜏(Wd

1
xv +Wd

2
xe +Wd

3
�̃�
(t−1)

ij
)

We extend the model with a message m̂�i,�j
 via graph 

encoder, which provides a subgraph-dependent location con-
text for bond(i, j).

3.3  End‑to‑end learning of VARL

According to the definition of variational reasoning and 
ELBO as above, we optimize the ELBO and update the 
objective function (10):

Where Q�

(
�t
||s, vi) is the variational posterior probability, 

which can be learned together with the model. The posterior 
distribution probability can reduce the approximation error. 
Q� calculates the likelihood of the solution �t and the target 
node vi for instance s . According to GRN, we define the 
range Gvi→�t

 of the target node vi and the inverse reasoning 
graph network g

(
Gvi→�t

)
 to calculate the embedding. The 

variational posterior probability consists of two parts:

(18)�̃�
(t−1)

ij
=

� ∑
w∈N(i)�j𝜇

(t−1)

wi
, 𝛽i = 𝛽j

�m𝛽i,𝛽j
+
∑

w∈N(i)�j𝜇
(t−1)

wi
, 𝛽i ≠ 𝛽j

(19)
max�,�1,�2

L
(
�, �

1
, �

2

)

=
1

N

∑N

i=1
EQ�(�t|s,vi )[logP�1

(
�t|s

)
+ logP�2

(
vi|�t , s

)
− logQ�(�t|s, vi)]

(20)Q𝜌

(
𝜋t
||s, vi) ∝ exp(W̃T

𝜋t
f̃ (s) + f̃G(s)

Tg
(
Gvi→𝜋t

)
)

Fig. 2  The difference at the frame level between the standard VAE 
(above) and the VAE with GAN (below), where �

1
 and �

2
 denote sam-

pling from the noise distribution. We added noise from the beginning 

and made the optimization framework simpler to improve the frame-
work’s efficiency
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Where W̃T
𝜋t

 , f̃G(s)
T are parameters and can be shared with 

(14), (15).
Since Q�

(
�t
||s, vi) is usually selected as an easy-to-handle 

distribution, which limits the flexibility of the model. We intro-
duce the generative adversarial network (GAN) to improve the 

optimization effect and robustness of the model (Fig. 2). We 
employ a latent way to express logP�1

(
�t|s

)
− logQ�

(
�t
||s, vi) , 

that is, the adversarial network T(s,�t) is introduced, so that its 
optimal value is just logP�1

(
�t|s

)
− logQ�

(
�t
||s, vi) . Specifically, 

we transform the optimization problem into the following form:

(21)maxTEPDtrain (x)
EQ�(�t|s,vi)log�

(
T
(
s,�t

))
+ EPDtrain (x)

Ep(�t)log(1 − �(T(s,�t)))

T(s,�t) is applied to determine whether the sample (s,�t) 
comes from PDtrain(x)

Q�

(
�t|s, vi

)
 or PDtrain(x)

P
(
�t
)
 , according 

to the optimal discriminant of GAN:

At this point, the objective function becomes:

The above optimization objective can easily obtain the 
gradient for �2 , but � is more troublesome because T*

(
s,�t

)
 

is related to � . However, we have the following equation:

We apply the re-parametrization to turn the optimization 
objective into:

Where � is the noise sampling, and the specific algorithm 
flow is shown in Algorithm 1.

3.4  REINFORCE with variance reduction

The commonly used reinforcement learning algorithms in pre-
vious works include actor-critic algorithm [26], Q-learning [5], 
REINFORCE [47]. However, it is not easy for the action-critic 
algorithm to fully play its role, and Q-learning has limited explo-
ration space and cannot be used for continuous action. Kool et al. 
and Duan et al. use a rollout baseline based on REINFORCE 
[28, 12], but Monte Carlo sampling requires large quantities of 
data in each training step. Therefore, we combine REINFORCE 
and variance reduction [48] to train our variational model to 
propose a more targeted and efficient reinforcement learning 
algorithm (REINFORCE with variance reduction).

We assume that there is only one training instance, that 
is, N = 1 , and the gradient of � with respect to the posterior 
parameters of L can be calculated as:

(22)T*
(
s,�t

)
= logQ�

(
�t|s, vi

)
− P

(
�t
)

(23)
max�2,�EPDtrain (x)

EQ�(�t|s,vi)(−T
*
(
s,�t

)
+ logP�2

(
vi|�t, s

)
)

(24)EQ�(�t|s,vi)
(
∇�T

*
(
s,�t

))
= 0

(25)
max�2,�EPDtrain (x)

E�(−T
*
(
s,�t�(s, �)

)
+ logP�2

(s
|||�t�(s, �)

)
)

(26)∇�L = EQ�(�t|s,vi)
[
∇�logQ�

(
�t|s, vi)�(�t, s, vi)]

Where �
(
�t, s, vi

)
 serve as a learning signal in the policy 

gradient. To reduce the variance of the gradient, we normalize 
the signal �

(
�t, s, vi

)
 and subtract the baseline function b(s, vi) 

[48], so the gradient can be approximately transformed into:

Where �̃� and �̃� estimate standard deviation and the mean 
of �(�t, s, vi) with moving average.

Testing and reasoning In the process of reasoning and test-
ing, it would be too expensive to find the target node sequence 
only through the problem instance and the following equation:

Therefore, we use the method of beam search to approx-
imate the solution. We select k candidate nodes from 
P�1

(
�t
||s) based on the score (when k = 1 , it is a greedy 

algorithm), and the final correct node is:
 
 

(27)
�
(
�t, s, vi

)
= logP�1

(
�t|s

)
+ logP2

(
vi|�t, s

)
− logQ�

(
�t
||s, vi)

(28)
∇𝜌L ≈

1

K

∑K

j=1
∇𝜌logQ𝜌

(
𝜋t
||s, vi )(

𝜔
(
𝜋t, s, vi

)
− �̃�

�̃�
− b(s, vi))

(29)argmaxlogP�2

(
vi
||�t, s

)
P�2

(
vi|�t, s)

(30)
v∗ = argmaxlogP�

2

(
vi|�t, s

)
, vi ∈ G�t

, �t ∈ {�
1
,�

2
,… ,�k}
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4  Experiments

This section demonstrates results and the discussion of the 
testing and reasoning and performs comparative analysis to 
prove the proposed method’s effectiveness and efficiency. 
We first introduced the data set used in the experiment and 
the parameter settings in the method in Section 4.1. Then 
we show the comparison of the effect of our method and the 
baseline on the TSP instance and the VRP instance in Sec-
tion 4.2 and Section 4.3, respectively. Finally, in Section 4.4, 
we show the learning curve of our method during training 
and testing.

4.1  Data sets and Settings

As mentioned above, VARL can solve both TSP and (sim-
ple) VRP, so our experiment is conducted in both problem 
instances. We employ generated data sets similar to previ-
ous methods [28]. The input form of the problem exam-
ple would be: “What is the shortest path for the vehicle to 
leave from the central node and pass through each customer 
node?”, “What is the shortest path set of N vehicles starting 
from the central node passing through each customer node 
and returning to the central node,” etc. Generally, the form 
of problem instances of VRP is relatively fixed, so we only 
need simple semantic matching to identify the topic of prob-
lems. So formally, our framework is relatively more flexible 
than the previous one because it is problem-oriented rather 
than designing heuristics based on the problem manually.

In the training phase of algorithm 1, we set the batch size 
at 512, epoch at 100, and training steps as 2000. We apply 
the Adam optimizer to update parameters and set the learn-
ing rate and learning rate delay at 10−3 and 0.96. The previ-
ous learning-based methods are primarily based on attention 
mechanism and GNN, quite different from our model. We 
choose some recent representative works as baselines, and 
their experimental results are obtained from their papers. 
Besides, we choose some heuristics-based methods [28], 
such as LKH3, Concorde, OR-Tools, and Nearest Neighbor.

4.2  Experiments on TSP

TSP is a simple variant of VRP. In VARL, VRP is trans-
formed into TSP by subgraph decomposition, enabling it 
to simultaneously solve two kinds of problems. In addition, 
it can decompose large graphs into small graphs, which is 
more conducive to solving large-scale instances.

We employ an evaluation method similar to [5] to evalu-
ate solution quality in test cases. We employ the approximate 
ratio of various methods to the optimal solution, averaged 
over the set of test cases. The approximation ratio of solution 
�t  t o  p ro b l e m  i n s t a n c e  s  i s  d e n o t e d  a s 

Ra

(
�t, s

)
= Max(

OPT(s)

c(h(�t))
,
c(h(�t))

OPT(s)
) , where OPT(s) is the opti-

mal solution obtained by the solver and c
(
h
(
�t
))

 is the 
objective value of solution �t . We select some state-of-the-
art learning-based methods (such as AM [28], S2V-DQN 
[5], and PN-AC [26]) and traditional heuristic algorithms [5] 
(such as 2-opt, Cheapest, and Nearest) as baselines. From 
the experimental results in Fig.  3, we can see that the 
approximate ratio of VARL on the small TSP is lower than 
that of baselines.

Compared to traditional methods, the 2-opt algorithm 
based on the improvement heuristic is far higher in solution 
quality than the simple interpolation algorithms (Cheapest 
and Nearest) based on the construction heuristic. The lat-
ter are also less competitive in the overall comparison. The 
working principle of the improvement heuristic is to improve 
the quality of the solution by giving an initial solution and 
then continuously improving iteratively. The construction 
heuristic aims to generate a complete solution from scratch. 
Generally speaking, the quality of the final solution obtained 
by the improvement heuristic algorithm is higher than that 
of the construction heuristic algorithm. Still, the improve-
ment heuristic algorithm often depends on the quality of 
the initial solution, so its generalization is weaker than that 
of the construction heuristic. Our method and the selected 
learning-based baseline are essentially learning construc-
tion heuristics. However, from the results, we can see that 
the quality of the solution of VRL surpasses the traditional 
improvement heuristic algorithm 2-opt and other learning-
based methods, which shows that our method effectively 
learns the construction heuristic and the data distribution 
in the TSP instance. Compared with multi-stage learning, 
VARL uses an end-to-end training paradigm to avoid errors 
caused by cascading propagation, which has a positive effect 
on improving the accuracy of the solution. Besides, com-
pared to the encoder-decoder framework constructed by 
applying attention and GNN, VARL seems to be inherently 
suitable for processing hidden variables in the intermediate 
process, which is more conducive to acceptable processing 
variables in the modeling.

From Fig. 3, we can also see that in large-scale TSP 
instances, VARL still has an advantage in the quality of the 
solution. Reasoning on large-scale TSP instances is chal-
lenging because the complexity of the problem increases 
geometrically as the number of nodes increases. Traditional 
methods require a lot of trial and error and expertise and 
cannot generalize, so designing a targeted heuristic algo-
rithm is expensive. The RNN-based and attention-based 
approaches show significant performance degradation when 
the problem size increases due to their inherent mechanisms. 
For processing large-scale graphs, we can use our proposed 
GRN and graph decoder to decompose it into sub-graphs 
based on the identification of the central node and then 
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divide and process each sub-graph. It is much easier than 
dealing with large-scale graphs directly. The advantage of 
VARL is still in both the modeling and training methods, the 
problem-specific encoding-decoding structure we designed, 
the GNN processing and reasoning of the whole graph, GAN 
and REINFORCE with variance reduction optimize the 
whole framework end-to-end efficiently.

4.3  Experiments on VRP

We solve the more complex constrained path optimiza-
tion problem (CVRP) by following [27] to generate VRP 
instances with nodes of 20, 50, 100, respectively, and 
normalize the demand of each node depending on the 
capacity. We assume that node locations and requirements 
are randomly generated from a fixed distribution. The 
warehouse and customers’ locations are randomly gener-
ated in a unit square [0,1] × [0,1] . For simplicity, let us 
assume that the requirements for each customer point are 
from {1,… , 9} , while we find any distribution, includ-
ing continuous distribution, can generate that customer 
demand. In each decoding step, the vehicle selects the 
node to visit in the next step from the graph. After visit-
ing the customer node vi , the demand and vehicle capacity 
is updated as follows:

The above variables are defined in Section 3.1. Because 
we use a messaging passing network (the information for 
nodes and edges is updated iteratively over time) and a 
problem instance-oriented mechanism. We can deal with 
dynamic cases that change as time step t changes.

As shown in Table 1, VARL still has an advantage over 
traditional and attention-based approaches addressing VRP. 
VARL is more flexible and needs to change the correspond-
ing problem inputs and related variables to deal with more 
complex VRP problems. Compared with the method based 
solely on attention, VARL can better use the advantages 
of GNN. It has a global and local view on the graph and 
can better guide the agent to reason. In addition, the REIN-
FORCE with variance reduction in VARL is more efficient 
than the REINFORCE with rollout baseline in AM, which 
avoids a lot of Monte Carlo rollouts, and training the autoen-
coder is significantly lighter than training the transformer.

It is worth noting that the solution solver still main-
tains a high level in terms of its quality, especially the 

(31)xd
i,t+1

= max(0, xd
i,t
− Qt)

(32)xd
j,t+1

= xd
j,t

(33)Qt+1 = max(0,Qt − xd
i,t
)

Fig. 3  The approximate ratio of 
the VARL and baseline methods 
results in the optimal solution 
on small TSP instances
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Lin-Kernighan-Helsgaun heuristic. However, solution 
solvers like LKH3 [49] [50] are often based on improve-
ment heuristics, that is, to improve the quality of the solu-
tion by continuously improving the initial solution. It is 
unfair to compare the improvement heuristic with the 
construction heuristic of learning to construct a solution 
from scratch. The former has already obtained at least one 
feasible solution at the beginning of the test. In addition, 
the time consumed by traditional heuristic algorithms on 
small-scale problem instances is already too long, which 
is unacceptable for large-scale problems in reality. For 
the time complexity of traditional algorithms, there is 
not much room for improvement. However, as long as 
the learning-based method is well trained, after learning 
the data distribution of a given problem, the time it takes 
to test is much lower than traditional algorithms. More 
importantly, learning-based methods are much higher than 
traditional algorithms in terms of generalization because 
the former can solve problems one-to-many. In contrast, 
the latter can only solve problems one-to-one.

4.4  Effects of learning

Training effectiveness of learning-based methods is a 
significant evaluation index, especially for reinforcement 
learning methods, because different reinforcement learning 
algorithms significantly impact training effectiveness. For 
example, Q-learning is more suitable for a greedy algo-
rithm to deal with discrete actions, while REINFORCE is 
more suitable for continuous actions. The training effect 
of the reinforcement learning algorithm and space’s size 
will be different due to different models or application sce-
narios. VARL also combines different components, such as 
variational autoencoder, GAN, GNN. It is necessary to test 
the learning effect of VARL, so we observe the comparison 
between VARL and baselines in terms of convergence on 
VRP100. Figure 4 visualizes the experimental results.

From the learning curve, we can see that the con-
vergence speed and learning robustness of VARL have 
advantages over the baseline. Compared with GCN-NPEC 
[12], its two-stage training strategy can make the model a 
“warm start” initially. Still, the training loss will be back-
propagation, and the subsequent reinforcement learning 
will lead to more and more errors, and its training method 
is also the REINFORCE with rollout baseline. VARL uses 
the end-to-end training method, and GAN is introduced to 
assist optimization. Its training method is more efficient 
and stable. From the perspective of the whole framework, 
VARL is still much lighter than GCN-NPEC because 
GCN-NPEC contains more GNN, so it is a heavy burden 
for the joint training of multi-GNN.

We demonstrate in Fig. 5 the learning curve of using 
reinforcement learning to train VRL on TSP20. The curve 
describes the change in the agent’s rewards with increasing 
time steps in each epoch. We selected the first five epochs 
because we observed that the learning curve has stabilized 
only after the first epoch, and the learning curve has con-
verged at the beginning of the first epoch. It shows that 
our method can quickly converge on small-scale problem 
instances and effectively learn the data distribution. Rein-
forcement learning is notoriously unstable, but we can see 
that REINFORCE with variance reduction in VARL is effi-
cient from the learning curve.

5  Conclusions

In this paper, we apply variational learning to combinato-
rial optimization (CO) on graphs. Firstly, we define the 
combinatorial optimization problem in the form of vari-
ational learning. We use the message passing network to 
process the input graph. At the same time, we combine the 
node information in the graph to identify the central node 
(topic) in the problem instance and decompose the graph 
into different sub-graphs with the central node as the root. 
We propose a novel GNN (Graph Reasoning Network) 
for reasoning on graphs and introduce GAN in variational 
learning to improve efficiency and robustness. Finally, 
we use REINFORCE with variance reduction to train the 
entire framework. We introduce variational learning into 
CO for the first time and prove that the fusion of each 
component is appropriate.

Variational autoencoders are inherently equipped with 
encoders and decoders, in line with the paradigm of solving 
CO. The latent variables in variational learning can enable 
the model to learn better data distribution. More importantly, 
we can employ variational learning as a basic framework 
to incorporate different efficient learning algorithms. In 
the future, we will continue to explore the application and 

Table.1  Comparison of model performance tested on different VRP 
variants with different node numbers

Method n=20 n=50 n=100
Obj. Time Obj. Time Obj. Time

LKH3 6.14 2 h 10.38 7 h 15.65 13 h
OR Tools 6.43 - 11.31 - 17.16 -
Gurobi 6.10 - - - - -
PRL (greedy) 6.59 - 11.39 - 17.23 -
PRL (beam) 6.40 - 11.15 - 16.96 -
AM (greedy) 6.40 1 s 10.98 3 s 16.80 8 s
AM (sampling) 6.25 6 m 10.62 28 m 16.23 2 h
VARL 6.21 1 s 10.54 2 s 16.19 5 s



 Q. Wang 

1 3

Fig. 4  The approximate ratio of 
the VARL and baseline methods 
results in the optimal solution 
on VRP100

Fig. 5  We selected the first five 
epochs of VARL training on 
TSP20 and generated a curve 
of the average route length 
(reward value) obtained with 
each epoch’s increment of the 
time step
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innovation of probabilistic graph model modeling and its 
training method of CO on graphs.
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