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Abstract

Contemporary neural networks still fall short of human-level generalization, which extends
far beyond our direct experiences. In this paper, we argue that the underlying cause for
this shortcoming is their inability to dynamically and flexibly bind information that is
distributed throughout the network. This binding problem affects their capacity to acquire
a compositional understanding of the world in terms of symbol-like entities (like objects),
which is crucial for generalizing in predictable and systematic ways. To address this issue,
we propose a unifying framework that revolves around forming meaningful entities from
unstructured sensory inputs (segregation), maintaining this separation of information at a
representational level (representation), and using these entities to construct new inferences,
predictions, and behaviors (composition). Our analysis draws inspiration from a wealth of
research in neuroscience and cognitive psychology, and surveys relevant mechanisms from
the machine learning literature, to help identify a combination of inductive biases that allow
symbolic information processing to emerge naturally in neural networks. We believe that
a compositional approach to Al, in terms of grounded symbol-like representations, is of
fundamental importance for realizing human-level generalization, and we hope that this
paper may contribute towards that goal as a reference and inspiration.
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1. Introduction

Existing neural networks fall short of human-level generalization. They require large amounts
of data, struggle with transfer to novel tasks, and are fragile under distributional shift.
However, under the right conditions, they have shown a remarkable capacity for learning and
modeling complex statistical structure in real-world data. One explanation for this discrepancy
is that neural networks mostly learn about surface statistics in place of the underlying concepts,
which prevents them from generalizing systematically. However, despite considerable effort
to address this issue, human-level generalization remains a major open problem.

In this paper, we will view the inability of contemporary neural networks to effectively
form, represent, and relate symbol-like entities, as the root cause of this problem. This
emphasis on symbolic reasoning reflects a common sentiment within the community and
others have advocated similar perspectives (Fodor and Pylyshyn, 1988; Marcus, 2003; Lake
et al., 2017). Indeed, it is well established that human perception is structured around objects,
which serve as compositional ‘building blocks’ for many aspects of higher-level cognition such
as language, planning, and reasoning. This understanding of the world, in terms of parts
that can be processed independently and recombined in near-infinite ways, allows humans to
generalize far beyond their direct experiences.

Meanwhile, the persistent failure of neural networks to generalize systematically is evidence
that neural networks do not acquire the ability to process information symbolically, simply as a
byproduct of learning. Specialized inductive biases that mirror aspects of human information
processing, such as attention or memory, have led to encouraging results in certain domains.
However, the general issue remains unresolved, which has led some to believe that the way
forward is to build hybrid systems that combine connectionist methods with inherently
symbolic approaches. In contrast, we believe that these problems stem from a deeper
underlying cause that is best addressed directly from within the framework of connectionism.

In this work, we argue that this underlying cause is the binding problem: The inability of
existing neural networks to dynamically and flexibly bind information that is distributed
throughout the network. The binding problem affects their ability to form meaningful entities
from unstructured sensory inputs (segregation), to maintain this separation of information at
a representational level (representation), and to use these entities to construct new inferences,
predictions, and behaviors (composition). Each of these aspects relates to a wealth of research
in neuroscience and cognitive psychology, where the binding problem has been extensively
studied in the context of the human brain. Based on these connections, we work towards a
solution to the binding problem in neural networks and identify several important challenges
and requirements. We also survey relevant mechanisms from the machine learning literature
that either directly or indirectly already address some of these challenges. Our analysis
provides a starting point for identifying the right combination of inductive biases to enable
neural networks to process information symbolically and generalize more systematically.

In our view, integrating symbolic processing into neural networks is of fundamental
importance for realizing human-level Al, and will require a joint community effort to resolve.
The goal of this survey is to support this effort, by organizing various related research into a
unifying framework based on the binding problem. We hope that it may serve as an inspiration
and reference for future work that bridges related fields and sparks fruitful discussions.
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2. The Binding Problem

We start our discussion by reviewing the importance of symbols as units of computation
and highlight several symptoms that point to the lack of emergent symbolic processing in
existing neural networks. We argue that this is a major obstacle for achieving human-level
generalization, and posit that the binding problem in connectionism is the underlying cause
for this weakness. This section serves as an introduction to the binding problem and provides
the necessary context for the subsequent in-depth discussion of its individual aspects in
Sections 3 to 5.

2.1 Importance of Symbols

The human capacity to comprehend reaches far beyond direct experiences. We are able to
reason causally about unfamiliar scenes, understand novel sentences with ease, and use models
and analogies to make predictions about entities far outside the scope of everyday reality, like
atoms, and galaxies. This seemingly infinite expressiveness and flexibility of human cognition
has long fascinated philosophers, psychologists, and Al researchers alike. The best explanation
for this remarkable cognitive capacity revolves around symbolic thought: the ability to form,
manipulate, and relate mental entities that can be processed like symbols (Whitehead, 1985).
By decomposing the world in terms of abstract and reusable ‘building blocks’, humans are
able to understand novel contexts in terms of known concepts, and thereby leverage their
existing knowledge in near-infinite ways. This compositionality underlies many high-level
cognitive abilities such as language, causal reasoning, mathematics, planning, analogical
thinking, etc.

Human understanding of the world in terms of objects develops at an early age (Spelke
and Kinzler, 2007) and infants as young as five months appear to understand that objects
continue to exist in the absence of visual stimuli (object permanence; Baillargeon et al.,
1985). Arguably, this decoupling of mental representation from direct perception is a first
step towards a compositional description of the world in terms of more abstract entities.
By the age of eighteen months, young children have acquired the ability to use gestures
symbolically to refer to objects or events (Acredolo and Goodwyn, 1988). This ability to
relate sensory entities is then key to the subsequent grounding of language. As the child grows
up, entities become increasingly more general and start to include categories, concepts, events,
behaviors, and other abstractions, together with a growing number of universal relations
such as “same”, “greater than”, “causes”, etc. This growing set of composable building blocks
yields an increasingly more powerful toolkit for constructing structured mental models of the
world (Johnson-Laird, 2010).

The underlying compositionality of such symbols is equally potent for Al, and numerous
methods that model intelligence as a symbol manipulation process have been explored.
Early examples included tree-search over abstract state spaces such as the General Problem
Solver (Newell et al., 1959) for theorem proving, or chess (Campbell et al., 2002); Expert
systems that made use of decision trees to perform narrow problem solving for hardware
design (Sollow et al., 1987) and medical diagnosis (Shortliffe et al., 1975); Natural language
parsers that used a dictionary and a fixed set of grammatical rules to interpret written
English; And knowledge bases such as semantic networks (networks of concepts and relations)
that could be used to answer basic questions (Weizenbaum, 1966), solve basic algebra word
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Figure 1: Various evidence for shortcomings of current neural networks. (a) CNN image
classifiers are biased towards texture over shape (Geirhos et al., 2019) and (b) can be well
approximated by bag-of-local-features models (Brendel and Bethge, 2019). Hence, scrambling
the image in a way that preserves local (but not global) structures affects them less than
humans. (c) Neural network based agents trained on Breakout, fail to generalize to slight
variations of the game such as a shifted paddle or an added middle wall (Kansky et al., 2017).
(d) Neural networks also struggle to learn visual relations such as whether two shapes are
the same or different (Fleuret et al., 2011; Kim et al., 2018).

problems (Bobrow, 1964), or control simple virtual block worlds (Winograd, 1971). All of
these examples of symbolic Al relied on manually designed symbols and rules of manipulation,
which allowed them to generalize in predictable and systematic ways. Since then, many of
these approaches have become part of the standard computer-science toolbox!.

2.2 Symbolic processing in Connectionist Methods

Connectionism takes a different, brain-inspired, approach to Artificial Intelligence that
stands in contrast to symbolic Al and its focus on the conscious mind (Newell and Simon,
1981; Fodor, 1975). Rather than relying on hand-crafted symbols and rules, connectionist
approaches such as neural networks focus on learning suitable distributed representations
directly from low-level sensory data. In this way, neural networks have resolved many of
the problems that haunted symbolic Al, including their brittleness when confronted with
inconsistencies or noise, and the prohibitive amount of human engineering and interpretation
that would be required to apply these techniques on low-level perceptual tasks. Importantly,
the distributed representations learned by neural networks are directly grounded in their
input data, unlike symbols whose connection to real-world concepts is entirely subject to
human interpretation (see symbol grounding problem; Harnad, 1990). Modern neural networks
have proven highly successful and superior to symbolic approaches in perceptual domains,
such as in visual object recognition (Ciresan et al., 2011, 2012; Krizhevsky et al., 2012) or

1. They are hardly called Al anymore since it is now well understood how to solve the problems that
they address. This redefinition of what constitutes Al is sometimes called the AI effect, summarized by
Douglas Hofstadter as “Al is whatever hasn’t been done yet”.
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speech recognition (Fernandez et al., 2007; Hinton et al., 2012), and even in some inherently
symbolic domains such as language modeling (Devlin et al., 2019; Radford et al., 2019; Brown
et al., 2020), translation (Wu et al., 2016), board games (Silver et al., 2017), and symbolic
integration (Lample and Charton, 2020).

On the other hand, it has become increasingly evident that neural networks fall short in
many aspects of human-level generalization, including those that symbolic approaches exhibit
by design. For example, it is difficult for neural language models to generalize syntactic
rules such as verb tenses or embedded clauses in a systematic manner (Keysers et al., 2020;
Lake and Baroni, 2018; Loula et al., 2018; Hupkes et al., 2020). Similarly, in vision, neural
approaches often learn overly specialized features that do not easily transfer to different
datasets or held-out combinations of attributes (Yosinski et al., 2014; Atzmon et al., 2016;
Santoro et al., 2018b). In reinforcement learning, where the use of neural networks has led
to superhuman performance in gameplay (Mnih et al., 2015; Silver et al., 2017; Berner et al.,
2019), it is found that agents are fragile under distributional shift (Kansky et al., 2017; Zhang
et al., 2018; Gamrian and Goldberg, 2019) and require substantially more training data than
humans (Tsividis et al., 2017). These failures at systematically reusing knowledge suggest
that neural networks do not learn a compositional knowledge representation (although some
mitigation is possible (Hill et al., 2019, 2020)). In some cases, such as in vision, it may
appear that object-level abstractions can emerge naturally as a byproduct of learning (Zhou
et al., 2015). However, it has repeatedly been shown that such features are best understood
as “a texture detector highly correlated with an object” (Olah et al., 2020; Sundararajan
et al., 2017; Ancona et al., 2017; Brendel and Bethge, 2019; Geirhos et al., 2019). In general,
evidence indicates that neural networks learn mostly about surface statistics (e.g. between
textures and classifications in images) in place of the underlying concepts (Jo and Bengio,
2017; Karpathy et al., 2015; Lake and Baroni, 2018).

A hybrid approach that combines the seemingly complementary strengths of neural
networks and symbolic approaches may help address these issues, and several variations have
been explored (Bader and Hitzler, 2005). A common variant uses a neural network as a
perceptual interface (or pre-processor) tasked with learning symbols from raw data, which
then serve as input to a symbolic reasoning system (e.g. Mao and Gan, 2019). Similarly,
bottom-up neural networks have been used to make inference more tractable in probabilistic
generative models that contain the desired symbolic structure (e.g. in the form of a symbolic
graphics renderer Kulkarni et al., 2015). Neural networks have also been combined with search-
based methods to improve their efficiency (Silver et al., 2016). Countless other variations
that vary in terms of the division of ur between the symbolic and neural components and
the choice of a mechanism used to couple them are possible (McGarry et al., 1999; Davidson
and Lake, 2020).

In this work, we will adopt a more unified approach that addresses these problems from
within the framework of connectionism. It is concerned with incorporating inductive biases
in neural networks that enable them to efficiently learn about symbols and the processes for
manipulating them (examples of such an approach are abound, even in early connectionist
research, e.g. Smolensky (1990); Pollack (1990); McMillan et al. (1992); Das and Mozer
(1993)). Compared to a hybrid approach, we believe that this is advantageous for a number
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Figure 2: The binding problem in artificial neural networks can be understood from the
perspectives of segregation, representation, and composition. Each of these subproblems
focuses on a different functional aspect of dynamically binding neurally processed information
with the aim of facilitating more symbolic information processing.

of reasons. Firstly, it reduces the required amount of task-specific engineering? and helps
generalize to domains where expert knowledge is not available. Secondly, by tightly integrating
multiple different layers of abstraction, they can continuously co-adapt, which avoids the need
for rigid interfaces between connectionist and explicitly symbolic components. Finally, as is
evident from the brain, it is sufficient to simply behave as an emergent symbol manipulator,
and therefore explicit symbolic structure is not a requirement. The main challenge regarding
this approach to Al is then to identify corresponding inductive biases that enable symbolic
behavior to emerge.

2.3 The Binding Problem in Connectionist Methods

We claim that there exists an underlying cause for the lack of emergent symbolic processing
in neural networks, which we refer to as the binding problem. The binding problem is about
the inability to dynamically and flexibly combine (bind) information that is distributed
throughout the network, which is required to effectively form, represent, and relate symbol-
like entities. In regular neural networks, information routing is largely determined by the
architecture and weights, both of which are fixed at training time. This limits their ability
to dynamically route information based on a particular context and thereby accommodate
different patterns of generalization.

The binding problem originates from neuroscience, where it is about the explanatory gap
in our understanding of information processing in the brain. It includes perceptual binding
problems such as visual binding (color, shape, texture), auditory binding (a voice from a
crowd), binding across time (motion), cross-modal binding (sound and vision into joint event),
motor-behavior (an action), and sensorimotor binding (hand-eye coordination) (Treisman,
1996; Roskies, 1999; Feldman, 2013). Another class—sometimes referred to as cognitive

2. This leaves the question of the innateness of aspects like causality or three-dimensional space open. Such
priors might be helpful or eventually even necessary, however, an intelligent system must also be capable
of independently discovering and using novel concepts and structures.
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binding problems—includes binding semantic knowledge to a percept, memory reconstruction,
and variable binding in language and reasoning®.

In the case of neural networks, the binding problem is not just a gap in understanding
but rather characterizes a limitation of existing neural networks. Hence, it poses a concrete
implementation challenge to address the need for binding neurally processed information,
which we believe is common to all of the above subproblems. On the other hand, although
we are convinced that this problem can be addressed by incorporating a general dynamic
information binding mechanism, it is less clear how this can be implemented. Indeed,
the search for an adequate mechanism for binding (in one form or another) is a long-
standing problem, not just in neuroscience and cognitive psychology, but also in machine
learning (Smolensky, 1987, 1988; Sun, 1992). Rather than focusing on a particular subproblem,
here we propose to tackle the binding problem in its full generality, which touches upon all
these related areas of research. In this way, we can connect ideas from otherwise disjoint
areas, and thus draw upon a large body of research towards developing a general binding
mechanism. Inspired by Treisman (1999), we organize our analysis along a functional division
into three aspects pertaining to the role of binding for symbolic information processing in
neural networks: 1) representation, 2) segregation, and 3) composition, each of which takes a
different perspective on the binding problem.

THE REPRESENTATION PROBLEM is concerned with binding together information at a
representational level that belongs to separate symbol-like entities. It revolves around so-
called object representations, which act as basic building blocks for neural processing to
behave symbolically. Like symbols, they are self-contained and separate from one another
such that they can be related and assembled into structures without losing their integrity.
But unlike symbols, they retain the expressive distributed feature-based internal structure of
connectionist representations, which are known to facilitate generalization (Hinton, 1984;
Bengio et al., 2013). Hence, object representations encode relevant information in a way
that combines the richness of neural representations with the compositionality of symbols.
We chose the term “object” representation because it is evocative of physical objects, which
are processed as symbols in many important cognitive tasks. However, we emphasize that
object representations are also meant to encode non-visual entities such as spoken words,
imagined or remembered entities, and even more abstract entities such as categories, concepts,
behaviors, and goals®.

Interestingly, even the seemingly basic task of incorporating object representations in
neural networks faces several problems, such as the “superposition catastrophe” (von der
Malsburg, 1986) portrayed in Figure 3. It suggests that fully-connected neural networks
suffer from an “inherent tradeoff between distributed representations and systematic bindings
among units of knowledge” (Hummel and Holyoak, 1993). A general treatment of object
representation in neural networks involves addressing the superposition catastrophe, along
with several other challenges, which we discuss in Section 3.

3. The term binding problem has also been used in the context of consciousness, as the problem of how a single
unitary experience arises from the distributed sensory impressions and processing in the brain (Singer,
2001)

4. We have considered several other terms for “object” representations, including entity, gestalt, icon, and
concept, which perhaps better reflect their abstract nature but are also less accessible at an intuitive
level. The fact that objects are more established in the relevant literature gave them the final edge.
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Figure 3: Ilustration of the superposition catastrophe: A distributed representation in terms
of disentangled features like color and shape (a, b) leads to ambiguity when confronted with
multiple objects (c¢): The representation in (c) could equally stand for a red apple and a
green pear, or a green apple and a red pear. It leads to an indiscriminate bag of features
because there is no association of features to objects. A simple form of this problem in neural
networks was first pointed out in Rosenblatt (1961), and has been debated in the context of
neuroscience since (Milner, 1974; von der Malsburg, 1981).

THE SEGREGATION PROBLEM is about the process of structuring raw sensory information
into meaningful entities. It is concerned with the information binding required for dynamically
creating object representations, as well as the characteristics of objects as modular building
blocks for guiding this process. This notion of an object is context and task-dependent,
and difficult to formalize even for concrete objects like a tree, a hole, or a river, which are
self-evident to humans. Hence, the segregation problem relates to the problem of instance
segmentation in that it also produces a division of the input into meaningful parts, but it is
complicated by the fact that it is concerned with objects in their most general form. The
incredible variability among objects makes it intractable to resolve the segregation problem
purely through supervision. Consequently, the segregation problem (Section 4) is about
enabling neural networks to acquire an appropriate, context-dependent, notion of objects in
a mostly unsupervised fashion.

THE COMPOSITION PROBLEM is about using object representations to dynamically con-
struct compositional models for inference, prediction, and behavior. These structured models
leverage the modularity of objects to support different patterns of generalization, and are the
means by which more systematic ‘human-like’ generalization can be accomplished. However,
this relies on the ability to learn abstract relations that can be arbitrarily and recursively
applied to object representations, and requires a form of binding, not unlike the way variables
can be bound to placeholder symbols in a mathematical expression. Moreover, the desired
structure is often not known in advance and has to be inferred or adapted to a given context
or task. To address the composition problem (Section 5), a neural network thus requires
a mechanism that provides the flexibility to quickly restructure its information flow and
ultimately enable it to generalize systematically.
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Figure 4: A visual scene composed of various unfamiliar objects.

3. Representation

In this section, we look at the binding problem from the perspective of representation. We
have argued that, to take advantage of symbolic processing, neural networks require some
form of object representations that combine the richness of neural representations with the
compositionality of symbols. These object representations are intended as modular ‘building
blocks’ from which to efficiently compose structured models of the world. This has direct
consequences for the representational format and its underlying dynamics.

Consider for example Figure 4, where you are able to distinguish between five different
objects. You can readily describe each object in terms of its shape, color, material, and other
properties, despite most likely never having encountered them before. Notice also how these
properties relate to individual objects as opposed to the entire scene, which is also evident
from the fact that you can tell that the color green occurs multiple times for different objects.
Finally, notice how you are readily able to perform comparisons, for example, to tell that the
shape of the blue object is the same as that of the green one in the back, but that they differ
in color.

In the following, we take a closer look at the format of object representations (Section 3.1).
We work towards a format that separates information about objects and is general enough to
accommodate unfamiliar objects in a meaningful way so that they can readily be compared.
Additionally, we will also consider the representational dynamics that are required to support
stable and coherent object representations over time (Section 3.2). Towards the end, we
survey relevant approaches from the literature that may help incorporate these aspects of
object representations into neural networks (Section 3.3).

3.1 Representational Format

We seek a representational format that distinguishes objects, while retaining the advantages
of learned distributed representations. These representations have proven highly successful
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Figure 5: Left: Interpretable features learned on ImageNet as observed in Olah et al.
(2017). Right: Learned word embeddings have been demonstrated to capture some of the
semantic structure of text (Mikolov et al., 2013), although to a lesser extent than was initially
reported (Nissim et al., 2019).

(e.g. Ciresan et al., 2011; Hinton et al., 2012; Krizhevsky et al., 2012) and are known to
partially capture the semantic structure of a task (Figure 5), such as interpretable image
features (Zeiler and Fergus, 2014; Olah et al., 2020), or the semantic structure of text (Mikolov
et al., 2013; but compare Nissim et al., 2019). In this way learned object representations can
also benefit from known inductive biases that focus on feature hierarchies, invariances, and
spatio-temporal coherence (Becker and Hinton, 1992), sparsity (Olshausen and Field, 1996),
or non-Euclidean feature spaces (Nickel and Kiela, 2017).

3.1.1 SEPARATION

To support the construction of structured models, object representations need to act as
modular building blocks. This requires information about individual objects to remain
separated at a representational level, such that their features do not interfere with one
another, even when composed. Additionally, the features that belong to an object must be
able to act as a unit, which implies strong dependencies between its features. For example,
when an object representation appears or ceases to exist, all of its features are equally
affected.

The separation of information has to be flexible enough to ensure that objects can be
formed from novel (unseen) feature combinations. Hence, it is important that it is not
purely determined by the representational content of the objects, but rather acts as an
independent degree of freedom. Regarding capacity, it may suffice to represent only a few
objects simultaneously, despite the fact that a typical scene potentially contains a large
number of objects. Indeed, the capacity of the human working memory is generally believed
to only be around 3-9 objects (Fukuda et al., 2010; Miller, 1956).

3.1.2 CoMMON FORMAT

To be able to efficiently relate and compare a wide variety of object representations, they
must be described in a common format. Recall how in Figure 4 you were able to freely
compare a number of unfamiliar objects in terms of their properties, such as their size, shape,
and location. On the one hand, this is possible because you have acquired a number of

10
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general relationships, such as “bigger than”, “left of”, etc., which we will discuss in detail
in Section 5. What is more important here is that such relations can only be applied if
object representations provide a shared interface. More generally, a common format helps to
ensure that any learned relation, transformation, or skill (like grasping) transfers between
similar objects independent of context. Similarly, a common set of features helps carry over
experiences between objects during learning.

3.1.3 DISENTANGLEMENT

Individual object representations need to be able to describe a large variety of (possibly
unseen) objects in terms of attributes that are useful for down-stream problem-solving. This
requires focusing on factors of variation in the data, that are sufficiently expressive, but also
compact and reusable (i.e. they can be varied independently). Indeed, humans arguably
manage to accomplish this by focusing on a relatively small, but consistent set of attributes
such as color, shape, etc. (Devereux et al., 2014).

A disentangled representation aims to make these attributes explicit by establishing a local
correspondence between (independent) factors of variation and features (Barlow et al., 1989;
Schmidhuber, 1992¢; Higgins et al., 2017a, 2018; Ridgeway and Mozer, 2018). In this case,
information about a specific factor can be readily accessed and is robust to unrelated changes
in the input, which improves sample efficiency and down-stream generalization (Higgins et al.,
2017b; van Steenkiste et al., 2019b). In the context of object representations, disentanglement
implies a factorized feature space that captures salient properties of objects. Together with
a common format, it facilitates generalization to unseen feature combinations and enables
useful comparisons between objects and other meaningful relations to be formed.

3.2 Representational Dynamics

When interacting with the real world, the stream of sensory information continuously evolves
over time. It is therefore important to consider not only instantaneous representations, but
also their dynamics over time.

3.2.1 TEMPORAL DYNAMICS

An object representation requires ongoing updates across time for a number of reasons: Firstly,
with objects constantly moving and transforming in the real world, their corresponding
representations need adjustments to remain accurate. Secondly, certain temporal attributes
such as movement or behavior can only be estimated when considering the history of
information. Finally, with the limited amount of information that can be observed about
an object at any given time, accumulating information over multiple partial views can help
produce more informative object representations.

An important aspect among all these cases is the need for an object representation to
consider not only the input but also its own history (recurrence). This requires a stable
identity to help ensure that information across time-steps is associated with the correct object
representation. Note that the identity of an object cannot be tied exclusively to its visible
properties, as illustrated by the extreme example of a fairytale prince that is transformed
into a frog (Marcus, 2003; Bambini et al., 2012).

11
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3.2.2 RELIABILITY

Structured mental models depend on object representations to provide a stable foundation for
reasoning and other types of information processing (Johnson-Laird, 2010). The reliability
of this foundation is especially important for more abstract computations to which object
representations provide the only connection to the world. However, perfect reliability is
unattainable since sensory information about the world is noisy and incomplete, and the
capacity of any model is inherently limited.

Explicitly quantifying uncertainty can help mitigate this issue and prevent noise and
errors from accumulating undetectably. In addition, certain small amounts of noise in an
object representation may be continually corrected by leveraging dependencies among its
features (i.e. through the features of an object acting as a unit). An important source of
uncertainty accumulation is due to objects that are temporarily not perceived (e.g. as a
result of occlusion). In this case, a ‘self-correcting’ representation may help maintain a stable
object representation, even in the absence of sensory input (object permanence).

Uncertainty about object representations may also arise due to ambiguous inputs that
allow for several distinct but coherent interpretations (for example see Figure 9 on page 16).
The ability to (at least implicitly) encode multi-modal uncertainty is crucial to effectively
treat such cases. Top-down feedback may then help disambiguate different interpretations
(see also Sections 4.2.2 and 5.2.2).

3.3 Methods

In order to fulfill the desiderata outlined above, we require a number of specialized inductive
biases. Indeed, it should now also be clear that a simple MLP falls short at adequately
representing multiple objects simultaneously: If it attempts to avoid the superposition
catastrophe by learning features that are specific to each object, then they lack a common
format and become difficult to compare®. Therefore, in the following we will review several
approaches for representing multiple objects in neural networks. We will focus on common
format, temporal dynamics, reliability, and in particular on separation, which thus far has
received little attention in the main-stream neural networks literature.

3.3.1 SLOTS

N |

v
|

D >
1 /A
< d= =

Instance Slots Sequential Slots Spatial Slots Category Slots

Figure 6: Illustration of the four different types of slot-based representations.

5. Others have suggested ways in which MLPs could in principle circumvent this problem (O’Reilly and
Busby, 2002; Pollack, 1990). However, neither of these offer a solution that can convincingly fulfill all
of the above desiderata simultaneously. In fact, even for plain RNNs it was found that when they are
trained to remember multiple objects internally, they resort to a localist representation (Bowers et al.,
2014).

12
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The simplest approach to separation is to provide a separate representational slot for
each object. This provides a (typically) fixed capacity working memory with independent
object representations that can all be accessed simultaneously. Weight sharing can then be
used to ensure a common format among the individual slots.

INSTANCE SLOTS In the most general form, which we call instance slots, all slots share a
common format and their information can be kept separate, independent of their representa-
tional content. Instance slots are very flexible and general in that they have no preference for
content or ordering. However, this generality introduces a routing problem when a common
format is enforced via weight sharing: with all slots being identical, bottom-up information
processing needs to break this symmetry to avoid assigning the same content to each one.
Hence, the allocation of information to each slot must be determined by taking the other slots
into account, which complicates the process of segregation (see also Section 4.2). Instance
slots have been used in several approaches to learning object representations, including
Masked Restricted Boltzman Machines (M-RBMs; Le Roux et al., 2011), Neural Expectation-
Maximization (N-EM; Greff et al., 2017), and IODINE (Greff et al., 2019). They can also
be found in the memory of memory-augmented neural networks (Joulin and Mikolov, 2015;
Graves et al., 2016), in self-attention models (Vaswani et al., 2017; Dehghani et al., 2019;
Locatello et al., 2020), in Recurrent Independent Mechanisms (RIMs; (Goyal et al., 2019)), al-
beit without having a common format, and in certain graph neural networks (Battaglia et al.,
2018), where they are treated as internal representations that can be accessed simultaneously.

SEQUENTIAL SLOTS Sequential slots break slot symmetries by imposing an order on the
representational slots, typically across time. They are commonly found in RNNs and, when
paired with an attention mechanism that attends to a different object at each step, can
serve as object representations. With weights typically being shared across (time)steps,
sequential slots naturally share a common format and unlike other slot-based representations
can dynamically adjust their representational capacity. Sequential slots in RNNs have been
used as object representations, for example in Attend Infer Repeat (AIR; Eslami et al., 2016)
and to a lesser degree in DRAW (Gregor et al., 2015). However, due to recurrence, these
slots may not always be fully independent, which impedes their function as modular building
blocks. Recent approaches, such as Multi-Object Networks (MONet; Burgess et al., 2019)
and GENESIS (Engelcke et al., 2019), alleviate this by using recurrence only for information
routing, but not for the object representations themselves. In general, a potential limitation
of sequential slots is that they are not simultaneously accessible at any given (time)step for
down-stream processing. This can be addressed via a set function over sequential slots, such
as the attention mechanism in certain neural machine translation methods (Bahdanau et al.,
2014) or in pointer networks (Vinyals et al., 2015).

SPATIAL SLOTS In spatial slots, each slot is associated with a particular spatial coordinate
(e.g. in an image), which helps to break slot symmetries and simplifies information routing.
They can still accommodate a common format through weight-sharing, but lack generality
because their content is tied to a specific spatial location. Because location and separation
are entangled, changes to the location of an object potentially correspond to a change of
slot, which complicates maintaining object identity across time. Spatial slots are commonly
found in CNNs, where multiple convolutional layers share filter weights across the spatial
dimensions to yield a spatial map of representational slots. Although they are not usually
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Figure 7: Illustration of the two main aug-
mentation based approaches to object repre-
sentations. Left: Neural activity over time
for a temporal code, where synchronization
is emphasized using color. Right: Complex
valued activations are represented by arrows
and colored according to their direction.
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advertised as object representations in this way, several recent approaches, such as Relation
Networks (Santoro et al., 2017), the Multi-Entity VAE (Nash et al., 2017), or the works
by Zambaldi et al. (2019); Stani¢ et al. (2020) explicitly treat each spatial position in the
filter-map of a CNN as a candidate object representation. Even more recent approaches,
such as SPAIR (Crawford and Pineau, 2019), SPACE (Lin et al., 2020), and SCALOR (Jiang
et al., 2020), expand on this by incorporating explicit features for the presence of an object
and its bounding box into each spatial slot. Nonetheless, a current limitation of these
approaches is that their spatial slots are typically tailored towards objects that are reasonably
well separated, and whose size is compatible with the corresponding receptive field (or the
bounding box) in the image.

CATEGORY SLOTS A related approach is to allocate slots according to some categorization
of objects based on properties other than location. This too can serve to break slot symmetries
for the purpose of information routing, and is further expected to mitigate the dependence
of spatial slots on spatially separated inputs. In this case, however, because now category
and separation are entangled, it is then no longer possible to represent multiple objects of
the same category®. The main example of category slots are capsules (Hinton et al., 2011,
2018), although other approaches such as Recurrent Entity Networks (Henaff et al., 2017)
can also be viewed from this perspective.

3.3.2 AUGMENTATION

Augmentation based approaches, unlike slot based ones, keep a single set of features shared
among all object representations and instead augment each feature with additional grouping
information. This grouping information is usually continuous, which may help to encode
uncertainty about the separation. Object representations based on augmentation will trivially
be in a common format, although extracting information about individual objects now requires
first processing the grouping information. An important limitation of augmentation is that it
requires substantial deviations from standard connectionist systems and is thus more difficult
to integrate with state of the art systems. Due to features being shared, augmentation may
also suffer from capacity and ambiguity problems when a feature is active in multiple object
representations at the same time (e.g. two red objects), similar to when representing multiple
objects of the same category using category slots Section 3.3.1.

6. There is some evidence that humans struggle with feature overlap too and show reduced working memory
capacity in these cases (Mozer, 1989).
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Figure 8: Illustration of a Tensor
Product Representation (matrix on
1 the right) that is formed through com-

E .| |. ] W [E | .. ®  Dbining a role vector (horizontal) and a
filler vector (vertical) for each object.

Tensor Product Representatlon

TEMPORAL CODES An early approach to object representation using augmentation in neural
networks made use of the temporal structure of spiking neurons for separation (temporal
codes). Here, the activation of a feature encoded by the firing rate is augmented with
grouping information encoded by the temporal correlation between firing patterns (Singer,
2009). In other words, the features that form an object are represented by neurons that
fire in synchrony (Milner, 1974; von der Malsburg, 1981; Singer, 1999; see also Section 6.3).
Rather than using unrestricted spiking networks, most work on object representation using
temporal codes focuses on oscillatory networks, where the firing pattern takes the form of a
regular frequency rhythm (for an overview see Wang (2005)). Because temporal codes rely on
spiking neurons, they are non-differentiable and also require simulating the dynamics of each
neuron even for static inputs. This makes them incompatible with gradient-based training,
and necessitates a completely different training framework (e.g. Doumas et al., 2008, 2019)
typically based on Hebb’s rule (Kempter et al., 1999), or Spike-Timing-Dependent Plasticity
(STDP; Caporale and Dan, 2008).

COMPLEX-VALUED CODES An alternative approach to augmentation uses complex-valued
neurons (features) in place of oscillatory neurons. Hence, instead of explicitly simulating
the temporal behavior of an oscillator, its activation and grouping information can now
be described as the absolute value and angle of a complex-valued neuron. Similar to
before, the grouping is implicit and smooth with neurons that “fire at similar angles” being
grouped together. Complex-valued neurons are differentiable and more compatible with
existing gradient-based learning techniques. On the other hand, they require specialized
activation functions that consider both real and imaginary parts’, which tend to be difficult to
integrate with existing methods. Successful integrations include complex-valued Boltzmann
Machines (Reichert and Serre, 2014; Zemel et al., 1995) and complex-valued RNNs that could
be trained either with backpropagation (Mozer et al., 1992) or via Hebbian learning (Rao
et al., 2008).

3.3.3 TENSOR PRODUCT REPRESENTATIONS

A Tensor Product Representation (TPR) consists of a real-valued matrix (tensor) that is
the result of combining distributed representations of fillers with distributed representations
of roles. TPRs can be used for representing multiple objects by associating fillers with
object representations and using roles to encode grouping information. A TPR is formed by
combining each filler with a corresponding role via an outer product (“binding operation”),

7. In some sense, complex codes can be seen as an instance of a more general — yet unexplored — class of
vector-valued activations that use the additional degrees of freedom for grouping.
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which are then composed to accommodate multiple object representations (‘“conjunction
operation”). When the role representations are linearly independent, then the object repre-
sentations can be retrieved from the TPR via matrix multiplication (“unbinding operation”).
Notice that, when the role-vectors are one-hot encodings, the TPR reduces to instance slots.
However, the additional freedom afforded by a general distributed role vector can be used
to encode structural information or uncertainty about the separation of objects. TPRs
always assume that the object representations are described in a common format. But note
that, similar to augmentation, extracting information about individual objects first requires
processing the grouping information (in this case via the unbinding operation). TPRs were
first introduced in Smolensky (1990) and several modifications have since been proposed
that consider different binding, unbinding, and conjunction operations (Plate, 1995; Kanerva,
1996; Gayler, 1998; see Kelly et al., 2013 for an overview). In the recent literature, TPR-like
mechanisms have been incorporated into neural networks using fast-weights (Schlag and
Schmidhuber, 2018) or self-attention (Schlag et al., 2019) to perform reasoning in language.

3.3.4 ATTRACTOR DYNAMICS

Up until this point, we have focused on methods that address the representational format of
object representations. Now we consider attractor dynamics as an approach for addressing
their representational dynamics (Section 3.2). Robust object representations are well described
by a stable attractor state in a larger dynamical system that models the representational
dynamics based on a given input. In this case, inferring a coherent object representation
corresponds to running the dynamical system forward until it converges to an attractor state.
A stable attractor is naturally self-correcting, and multiple competing interpretations (from
ambiguous inputs) can easily be described by separate attractor states. Top-down feedback
can then be used to switch interpretations by pushing the state of the system enough to
cause it to cross over to a different basin of attraction. By adapting the system dynamics
to changing inputs, they allow for moving attractors (changes of the object) or bifurcations
(creation or vanishing of interpretations).

Attractor Networks incorporate attractor dynamics in neural networks and have a
long history in connectionist research. Early work includes Hopfield networks (Hopfield,
1982), Boltzmann machines (Ackley et al., 1985), and associative memory (Kohonen, 1989).
Attractor states were also found to occur naturally in RNNs, especially when using symmetric
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recurrent weights (Almeida, 1987; Pineda, 1987). In recent years, however, they have received
little attention (but see Mozer et al. (2018); Iuzzolino et al. (2019)), which might be in part
because they can be difficult to train. In particular, the fact that each weight participates
in the specification of many attractors can lead to spurious (unintended) attractors and ill-
conditioned attraction basins (Neto and Fontanari, 1999). Localist attractor networks (Zemel
and Mozer, 2001) and flexible kernel memory (Nowicki and Siegelmann, 2010) are two
approaches that address this issue by introducing a separate representation for each attractor.
However, note that spurious attractors that correspond to novel feature combinations may
also be advantageous for generalization.

3.4 Learning and Evaluation

Object representations are the product of segregation and the foundation upon which
compositional reasoning is built. To effectively connect high-level abstract reasoning with
low-level sensory data they must be learned jointly, together with composition and segregation.
Learning object representations requires incorporating architectural inductive biases to ensure
a common format and to provide enough flexibility for dynamically separating information.
Regarding separation, slot-based approaches offer a simple and minimal approach, while
augmentation and TPRs are more difficult to incorporate, yet support more sophisticated use
cases. The problem of learning representations that are disentangled can be approached by
optimizing for some notion of (statistical) independence between features (e.g. Schmidhuber,
1992¢; Chen et al., 2016; Higgins et al., 2017a), sparse feature updates across time (Whitney,
2016), or independent controllability of features (Thomas et al., 2017). In terms of temporal
dynamics and robustness, the situation is less clear, although the use of attractor networks
may serve as a good starting point.

Evaluation plays a critical role in guiding research to make measurable progress towards
good object representations. A useful approach is to measure how well the system copes
with particular generalization regimes such as to held-out-combinations of features for
disentanglement (Esmaeili et al., 2019) and separation (Santoro et al., 2018b), prediction
roll-outs for temporal dynamics (van Steenkiste et al., 2018), and robustness to injected noise
for reliability (Mozer et al., 2018). However, in case of poor performance it may be difficult
to diagnose the source of the problem in terms of properties of the representational format
and dynamics. When ground truth information is available, an alternative is to directly
measure selected properties of the object representations, such as local correspondence
between ground-truth factors of variation and features for disentanglement (Eastwood and
Williams, 2018). Finally, qualitative measures such as latent traversals or projections of
the embedding space (van der Maaten and Hinton, 2008) can provide an intuition about
the learned representations but due to their subjectivity, quantitative measures should be
preferred.
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Figure 10: Photo of two leaf-tailed geckos — “young and old” © 2015 by Paul Bertner.

4. Segregation

In this section, we look at the binding problem from the perspective of segregation: the process
of forming object representations. Unlike in Section 3, where we focused on the need for
binding at a representational level to maintain a separation of information for given entities,
here we focus on the process of creating object representations through binding previously
unstructured (raw) sensory information. Humans effortlessly perceive the world in terms of
objects, yet this process of perceptual organization is surprisingly intricate (Wagemans, 2015).
Even for everyday objects like a mirror, a river, or a house, it is difficult to formulate precise
boundaries or a definition that generalizes across multiple different contexts. Nonetheless,
we argue that an important aspect common to all objects is that they may act as stable and
self-contained abstractions of the raw input. This then has important implications for the
process of segregation.

Consider for example Figure 10, which demonstrates several challenges for segregation
that must be overcome. To recognize the two geckos sitting on a branch you have to segment
out two unfamiliar objects (zero-shot) even though they belong to the same class (instance
segmentation) and their use of camouflage (texture similarity). Both the large gecko and the
branch are visually disconnected due to occlusion, and yet you perceive them as independent
wholes (amodal completion). Beyond separating these objects, you have also formed separate
representations for them that enable you to efficiently relate, describe, and reason about
them.

In the following,, we take a closer look at this process of segregation®. We first work
towards a general notion of an object built around modularity and hierarchy (Section 4.1).
Next, we focus on the process of forming object representations based on this notion
(Section 4.2). Unlike segmentation, which is typically only concerned with a static split at

8. We refer to this process as segregation rather than binding, to emphasize the fact that it typically requires
a separation of the inputs and features into meaningful parts.
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Figure 11: For partial ob-
jects (A) or only back-
ground (B), the occluded
regions can be inpainted
reasonably well, while in
the case of full object oc-
clusion (C) that is usually
impossible.

the input-level, segregation is inherently task-dependent and aims to produce stable object
representations that are grounded in the input and which maintain their identity over time.
Towards the end, we survey relevant approaches from the literature that may help neural
networks perform segregation (Section 4.3).

4.1 Objects

The question of what constitutes a meaningful object (i.e. for building structured models
of the world) is central to segregation. However, despite long-standing debates in many
fields including philosophy, linguistics, and psychology, there exists no general agreed-upon
definition of objects (Green, 2018; Cantwell-Smith, 1998). Here, we take a pragmatic stance
that focuses on the functional role of objects as compositional building blocks. Hence, we
are not interested in debating the “true” (i.e. metaphysical) nature of objects, but rather
consider object representations as components of a useful representational “map” that refers
to (but is not identical to) parts of the “territory” (world)®.

4.1.1 MODULARITY

From a functional perspective, the defining quality of an object is that it is modular, i.e. it is
self-contained and reusable independent of context. While this suggests choosing objects
with minimal information content (to improve reusability), it is equally important that
objects can be represented efficiently based on their internal predictive structure. We argue
that this trade-off induces a Pareto front of valid decompositions into objects that have
both strong internal structure, yet remain largely independent of their surroundings. By
organizing information in this way, objects are expected to capture information that is due to
independent causes, which matches our intuitive notion of objects in the real world (Green,
2018; Chater, 1996).

Consider the example of three balloons in front of a forest as depicted in Figure 11.
When a balloon is partially occluded (as in A), you are still able to make a reasonable guess
about the occluded part purely based on its internal predictive structure. On the other
hand, when an entire balloon is occluded (as in B) it is impossible to infer its presence from
the (unoccluded) context, and the most reasonable reconstruction is to fill in based on the

9. “A map is not the territory it represents, but, if correct, it has a similar structure to the territory, which
accounts for its usefulness.” (Korzybski, 1958).
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background (as in C). Notice that each balloon is modular in the sense that it is possible to
reuse them in many different contexts (e.g. when placed in a different scene). In contrast,
this would not be possible if an object were to be formed from the background and the
balloon. Hence, by carving up perception at the “borders of predictability”, objects allow for
an approximate divide and conquer (i.e. a compositional) approach to modeling the world.

4.1.2 HIERARCHICAL

Objects are often hierarchical in the sense that they are composed of parts that can themselves
be viewed as objects. Consider, for example, a house consisting of a roof and walls, which
themselves may consist of several windows and a door, etc. Depending on the desired level
of detail, a scene can therefore be decomposed in terms of coarser or finer scale objects,
corresponding to different solutions on the Pareto front. In most cases, these decompositions
relate to each other in the sense that they correspond to different levels in the same part-whole
hierarchy. However, in rare cases, two decompositions may also consider incompatible parts,
as, for example, in a page of text that can be decomposed either into lines or sentences!?.
Notice that there is a difference between this part-whole hierarchy and the feature hierarchy
typically found in neural networks. Here, parts are themselves objects, which are the result
of dynamically separating information into object representations (segregation). Hence, a
part-whole hierarchy can be viewed in terms of a number of general “is-part-of” relations
that can be reused between objects (see also Section 5.1.1).

4.1.3 MULTI-DOMAIN

It is worth emphasizing that objects (as referred to in the context of this paper) are not
restricted to vision, but also span sensory information from other domains such as audio or
tactile!! (and even be entirely abstract, although this is not the focus of segregation). For
example, auditory objects may correspond to different sources of sound, such as speakers
talking simultaneously in the same room (cocktail-party problem; Cherry, 1953). Objects
in the tactile domain are perhaps less obvious, but consider the example of writing on a
piece of paper with a pen, where you can clearly separate the sensations that arise from your
fingers touching each other, touching the pen, and touching the paper (see also Kappers and
Tiest, 2015)). Notice how you are likely to associate the sensations of touching the pen and
its visual perception with a common cause and therefore with the same object. This implies
that objects can be simultaneously grounded in sensory information from multiple domains,
which may help resolve ambiguities (e.g. McGurk Effect; Mcgurk and Macdonald, 1976).

4.2 Segregation Dynamics

Segregation needs not only infer a decomposition into objects, but also corresponding object
representations. As is evident from our previous discussion, there is no universal choice of
objects that is appropriate in all circumstances, which requires segregation to consider both

10. A unique hierarchy is favored by modularity because in the case of incompatible decompositions (i.e. not
corresponding to the same part-whole hierarchy) their objects cross “borders of predictability”, which
implies a weaker internal structure.

11. It is even discussed whether humans are capable of object perception in the olfactory domain (Batty,
2014).
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Figure 12: Human perception is multistable, which is often demonstrated using visual illusions
as in (a), yet it is also often encountered in the real world, e.g. for different groupings of
tiles (b). To steer segregation towards a useful decomposition it is important to incorporate
contextual information, for example to decide between a decomposition based on chairs or
based on stacks in (c).

context- and task-dependent information. Together with the need for a stable outcome, this
has several consequences for the segregation dynamics which we will consider next.

4.2.1 MULTISTABILITY

Most scenes afford many different useful decompositions that either stem from choosing
different levels of granularity (i.e. levels of hierarchy) or from ambiguous inputs that allow
for multiple distinct but coherent interpretations (see multi-modal separation uncertainty
Section 3.2.2). Together, these result in a massive number of potential object representations
(e.g. > 3000 letters per page of text). Simultaneously representing all of them is not only
intractable, but also undesirable, as the majority of object representations will not be useful
for any particular situation. A practical solution to this problem is a dynamical segregation
process that has multiple stable equilibria that each correspond to a particular decomposition
of a given scene. Indeed, humans resolve this problem via multistable perception, which allows
us to seamlessly switch back and forth between different interpretations (Attneave, 1971).
This effect is often demonstrated with visual illusions as in Figure 12a, but is in fact much
more common than these constructed examples suggest. For example, a simple tile pattern
(as in Figure 12b) can easily be perceived in several ways, including rows or columns of tiles.
Multistability can also be observed in other sensory modalities such as audio, tactile, and even
olfaction (Schwartz et al., 2012). Notice that it is possible to simultaneously perceive multiple
objects from the same decomposition, but not from different decompositions (e.g. perceiving
13 and B simultaneously in Figure 12a). This inherent limitation of multistable segregation
can also act as an advantage, since it ensures a single coherent decomposition of the input
and avoids mixing objects from different incompatible decompositions. It implies that the
process of segregation also has to be able to efficiently resolve conflicts from competing
decompositions (explaining away).

4.2.2 INCORPORATING ToP-DOWN FEEDBACK

Certain decompositions lead to a set of building blocks (objects) that are more useful than
others for a given task or situation. For example, when moving a stack of chairs to another
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room it is useful to group information about the individual chairs together as a single object
(see Figure 12¢). On the other hand, when the goal is to count each of the individual chairs,
a more fine-grained decomposition is preferred (and perhaps when repairing a chair an even
more fine-grained decomposition is needed). These building blocks underlie the structure of
downstream models that can be used for inference, prediction, and behavior, and the choice
of decomposition therefore affects the ability to generalize in predictable and systematic ways.
Hence it is important that the outcome of the segregation process can be steered towards
the most useful decomposition, based on contextual information. One of the main sources
of contextual information is top-down feedback, for example in the form of task-specific
information (e.g. to guide visual search) or based on a measure of success at performing the
given task. Memory could act as another source of contextual information, for example by
recalling a decomposition that has previously proven useful in the given situation.

4.2.3 CONSISTENCY

It is important that the grounding of object representations, as provided by the segregation
process, is both stable and consistent across time (i.e. it maintains object identity). This
helps to correctly accumulate partial information about objects, to infer temporal attributes
from prior observations (Section 3.2.1), and to ensure that the outcome of more abstract com-
putations in terms of object representations remain valid in the environment (Section 3.2.2).
It may also help to avoid “double-counting” of evidence (e.g. during learning)'?. Object
identity depends on a reliable mechanism for re-identification i.e. a mechanism for identifying
an object as being the same despite changes in appearance, perspective, or temporary absence
of sensory information. Consider, for example, a game of cups and balls, which involves
tracking a ball hidden under one of three identical cups that are being moved around. In this
case, a stable object identity requires maintaining separate identities for the cups despite
their identical appearance, as well as re-identifying the ball as it reappears from under the
cup. When an object is re-encountered after a prolonged period, re-identification may require
interfacing with some form of long-term memory.

4.3 Methods

To succeed at segregation (in the sense outlined above) a neural network must acquire a
comprehensive notion of objects and incorporate mechanisms to dynamically route their
information. Due to the prohibitive amount of potentially useful objects, it is unlikely that an
adequate notion can be engineered directly or taught purely through large-scale supervision.
Therefore, in the following, we will review a wide range of approaches, including more
classic non-neural approaches that have produced promising results despite incorporating
domain-specific knowledge only to a lesser degree. By also discussing the latter, we aim to
provide inspiration for the development of neural approaches that can learn about objects
directly from raw data (e.g. by focusing on modularity).

12. Consider the example from Marcus (2003) about owning a three-legged dog. Despite the fact that you
will likely see your dog much more often than other dogs, this series of observations does not affect your
overall belief about the number of legs that dogs typically have, since these observations are all associated
with the same dog.
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lllustration of Spectral Clustering Example PMI based Image Segmentation

Figure 13: Left: An illustration of (spectral) clustering approaches, which treat image
segmentation as a graph-partitioning problem. Right: Corresponding instance segments as
obtained by Isola et al. (2014).

4.3.1 CLUSTERING APPROACHES TO IMAGE SEGMENTATION

Image segmentation is concerned with segmenting the pixels (or edges Arbeléez et al., 2011)
belonging to an image into groups (e.g. objects) and therefore provides a good starting point
for segregation. A common approach to image segmentation is to cluster the pixels of an
image based on some similarity function (Jain et al., 1988). One particularly successful
approach is the spectral graph-theoretic framework of normalized cuts (Shi and Malik, 2000),
which treats image segmentation as a graph-partitioning problem in which nodes are given
by pixels and weighted edges reflect the similarity between pairs of (neighboring) pixels.
Partitioning is performed by trading-off the total dissimilarity between different groups with
the total similarity within the groups. To the extent that the similarity function is able to
capture the predictive structure of the data, this is then analogous to the trade-off inherent
to modularity. It is straightforward to achieve a hierarchical segmentation in this graph
clustering framework, either via repeated top-down partitioning (Shi and Malik, 2000) or
bottom-up agglomerative merging (Mobahi et al., 2011; Hoiem et al., 2011).

In the context of segregation, a central challenge is to define a good similarity function
between pixels that leads to useful objects. As we have argued, a hardwired similarity
function (e.g. as in Shi and Malik, 2000; Malik et al., 2001) has little chance at facilitating
the required flexibility, although different initial seedings of the clustering may still account
for multiple different groupings (i.e. multistability). Labeled examples can be used to
address this challenge in a multitude of ways, e.g. to learn a similarity function between
segments (Ren and Malik, 2003; Endres and Hoiem, 2010; Kong and Fowlkes, 2018) or discrete
graphical patterns (Lun et al., 2017), to learn boundary detection (Martin et al., 2004; Hoiem
et al., 2011), or as a means of top-down feedback (Mobahi et al., 2011). Unsupervised
approaches (based on self-supervision) provide a more promising alternative. One approach
is to learn a similarity function between pairs of pixels, e.g. based on their point-wise mutual
information using kernel-density estimation (Isola et al., 2014) or based on self-supervised
prediction using a neural network (Isola et al., 2015). Alternatively, one can attempt to
steer the clustering process based on the unsupervised principle of compressibility (minimum
description length; Mobahi et al., 2011).

Notice that, since clustering-based approaches to image segmentation focus on low-level
similarity structures, their understanding of objects at a more high-level is limited (i.e. at
the level of object representations, but see Bear et al., 2020).
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lllustration of Neural Image Segmentation Example Image Segmentations by Mask R-CNN

Figure 14: Left: An illustration of neural approaches that learn to directly output an image
segmentation. Right: Corresponding bounding boxes and instance segments as obtained by
He et al. (2017).

4.3.2 NEURAL APPROACHES TO IMAGE SEGMENTATION

An alternative approach to image segmentation that leverages the success of end-to-end
learning, is to directly output the segmentation with a deep neural network. Unlike clustering-
based approaches, which focus on the similarity structure between pixels (or small segments),
learning now takes place at the (global) image level, which allows objects to be modeled
at multiple levels of abstraction. On the other hand, due to the one-to-one (feedforward)
mapping from image to segmentation, it may now be more difficult to provide multiple
different segmentations (multistability) or a hierarchical segmentation, for a given input.

Recent approaches based on supervised learning from ground-truth segmentation have
produced high-quality instance segmentations of real-world images'3. For example, approaches
based on R-CNN (Girshick et al., 2014) decompose the instance segmentation problem into
the discovery of bounding boxes using region-proposal networks (Ren et al., 2015) and
mask prediction (Dai et al., 2016; He et al., 2017) to provide instance segmentations. The
more recent DEtection TRansformer (DETR; Carion et al., 2020) was able to integrate
these stages into a single Transformer-based network using a bipartite matching loss. Other
approaches output an energy function from which the segmentation is easily derived, e.g.
based on the Watershed transformation (Bai and Urtasun, 2017). Instance segmentation has
also been phrased as an image-to-image translation problem using conditional generative
adversarial networks (Mo et al., 2019). Approximate instance segments can also be obtained
as a by-product of performing some other task, such as learning to interpolate between
multiple images (Arandjelovi¢ et al., 2019) or minimizing mutual information between image
segments (Yang et al., 2020).

Unsupervised approaches that directly infer the segmentation (and that do not require
large-scale supervision) are more relevant in the context of segregation, but have received
far less attention. (Ji et al., 2019) propose to train a neural network to directly output the
segment that an input belongs to by maximizing the mutual information between paired
inputs in representational space (although it operates at the level of patches as opposed to
the global image). In the context of video, motion segmentation often produces segments

13. We would like to emphasize the distinction between instance segmentation and semantic segmentation.
In the context of segregation we are more interested in the former, which is concerned with the more
general notion of each segment being an object (instance). In contrast, semantic segmentation associates
a particular semantic interpretation (in the form of a label) with each segment, and therefore can not
segregate multiple objects belonging to the same class.
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lllustration of an Attention Mechanism Example Attention Windows by AIR

Figure 15: Left: An illustration of attention-based approaches, which sequentially attend to
individual objects. Right: Corresponding attention windows as obtained by Eslami et al.
(2016).

that correspond to instances (provided that they move, e.g. Cucchiara et al., 2003), which
can for example be learned through unsupervised multi-task learning (Ranjan et al., 2019).

4.3.3 SEQUENTIAL ATTENTION

In the context of segregation, attention mechanisms provide a means to selectively attend
to different objects sequentially. Compared to image segmentation, this does not require
exhaustively partitioning the image but instead allows one to focus only on the relevant
locations in the image (e.g. as a result of top-down feedback). Here we focus mainly on hard
attention mechanisms that attend to a strict (i.e. spatially delineated) subset of the available
information in the form of an attention window, e.g. in the shape of a bounding-box (Stanley
and Miikkulainen, 2004) or a fovea (Schmidhuber and Huber, 1991). Their strong spatial
bias (due to the shape of the attention window) makes them particularly relevant for the
domain of images, but more difficult to adapt to modalities in which meaningful objects are
not characterized by spatial closeness. On the other hand, the rigid shape of the attention
window may interfere with modularity due to potential difficulties in extracting information
about objects with incompatible shapes or that are subject to occlusion.

The main challenge for incorporating attention mechanisms is in correctly placing the
window. Early approaches by-pass this problem by evaluating a fixed attention window
exhaustively at each possible image location, or using several of many heuristics (Lampert
et al., 2008; Alexe et al., 2010; Uijlings et al., 2013). A classifier can then be trained to
determine which window contains an object (Rowley et al., 1998; Viola and Jones, 2001;
Harzallah et al., 2009). Other approaches compute a two-dimensional topographical saliency
map that reflects the presence of perceptually meaningful structures at a given location.
This facilitates an efficient control strategy to direct an attention window in an image by
visiting image locations in order of decreasing saliency (Itti et al., 1998). Salient regions
can be learned based on bottom-up information, such as the self-information of local image
patches (Bruce and Tsotsos, 2006). Alternatively, they can be derived by also incorporating
top-down information, e.g. by highlighting locations that are (maximally) informative with
respect to a discriminative task (Gao and Vasconcelos, 2005; Cao et al., 2015; Zhmoginov
et al., 2019). Recently, there has been renewed interest in saliency-based approaches through
the discovery of keypoints (Jakab et al., 2018; Kulkarni et al., 2019; Minderer et al., 2019;
Gopalakrishnan et al., 2020).
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Figure 16: Left: An illustration of generative approaches to segregation that model an image
as a mixture of components. Right: A corresponding decomposition in terms of individual
objects as obtained by Greff et al. (2019).

It is also possible to directly learn the control strategy for placing the window of attention,
which naturally accommodates top-down feedback. For example, learning the control
strategy can be viewed as a reinforcement learning problem, in which the actions of an
“agent” determine the location of the window. A policy for the agent (frequently implemented
by a neural network) can then be evolved (Stanley and Miikkulainen, 2004), trained with
Q-learning (Paletta et al., 2005), or via Policy Gradients (Butko and Movellan, 2009).
Alternatively, it can be incorporated as a separate action in an agent trained to perform
some task (e.g. classification) or to interact with an environment (Mnih et al., 2014; Ba et al.,
2014). AIR (Eslami et al., 2016) and its sequential extension SQAIR (Kosiorek et al., 2018)
deploy a similar strategy for an unsupervised learning task with the purpose of extracting
object representations. They make use of an attention mechanism that is fully differentiable
based on spatial transformer networks (Jaderberg et al., 2015), but see also DRAW (Gregor
et al., 2015) for an alternative mechanism. Similarly, Tang et al. (2014) incorporates a
window of attention in a deep belief network to extract object representations by performing
(stochastic) inference over the window parameters alongside the belief states.

Soft attention mechanisms implement attention as a continuous weighing of the input
(i.e. a mask) and can be seen as a generalization of hard attention. For example, in
MONet (Burgess et al., 2019), GENESIS (Engelcke et al., 2019), and ECON (von Kiigelgen
et al., 2020) a recurrent neural network is trained to directly support the learning of object
representations by outputting a mask that focuses on different objects at each step'. A
similar soft-attention mechanism has also been used to facilitate supervised learning tasks
such as caption generation (Xu et al., 2015), instance segmentation (Ren and Zemel, 2017), or
(multi-)object tracking (Kosiorek et al., 2017; Fuchs et al., 2019). Soft attention mechanisms
have also been applied internally (self-attention) to support segregation. For example, Mott
et al. (2019) incorporates a form of dot-product attention (Vaswani et al., 2017) in an agent
to attend to the internal feature maps of a bottom-up convolutional neural network that
processes the input image. A similar self-attention mechanism was also used to support
image classification (Zoran et al., 2020).
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4.3.4 PROBABILISTIC GENERATIVE APPROACHES

A probabilistic approach to segregation is via inference in a generative model that models
the observed data in terms of multiple components (objects) °. An advantage of explicitly
modeling the constituent objects is that it is easy to incorporate assumptions about their
structure, including modularity and hierarchy. This then enables inference (segregation) to
go beyond low-level similarities or spatial proximity, and recover object representation based
on their high-level structure as implied by the model. On the other hand, as we will see
below, inference usually becomes more difficult as the complexity of the generative model
increases, and especially when considering multi-modal distributions (i.e. for multistability).

The most basic assumption to incorporate in a generative model, for the purposes of
segregation, is to assume that the input is directly composed of multiple parts (objects)
that are each modeled individually. Inference in such models then allows one to recover a
partitioning of the input in addition to a description of each part (object representation).
Early approaches model images with a mizture model that treats the color values of individual
pixels as independent data points that are identically distributed (Samadani, 1995; Friedman
and Russell, 1997). Alternatively, the decomposition can be based on other features such as
optical flow (Jepson and Black, 1993) or the coefficients of a wavelet transform (Guerrero-
Colén et al., 2008). Mixture models can also be biased towards spatial coherence to
explicitly account for the spatial structure of visual objects (Weiss and Adelson, 1996; Blekas
et al., 2005). Independent Component Analysis (ICA) models the observed data as linear
combinations (mixtures) of unobserved random variables (sources) that are statistically
independent (Hyvérinen and Oja, 2000). This approach has been particularly successful
at blind source separation (segregation) in the auditory domain (e.g. the cocktail party
problem Cherry, 1953), although it has also seen application in the context of images (Lee
and Lewicki, 2002).

To more accurately model complex data distributions, it is possible to incorporate
domain-specific assumptions in the generative model (and thereby improve the result of
inference). For example, a generative model that captures the geometry of 3D images of
indoor scenes as well as the objects that are in it “[...| integrates a camera model, an
enclosing room ‘box’, frames (windows, doors, pictures), and objects (beds, tables, couches,
cabinets), each with their own prior on size, relative dimensions, and locations” (Del Pero
et al., 2012). The results that can be obtained by incorporating domain-specific knowledge
are impressive (Zhao and Zhu, 2011; Del Pero et al., 2012, 2013; Tu et al., 2005; Tu and Zhu,
2002). However, performing inference in highly complex generative models of this type is
problematic and frequently relies on custom inference methods tailored to this particular
task (e.g. Markov Chain Monte Carlo using jump moves to remove or add objects or specific
initialization strategies). In recent years, probabilistic programming languages have emerged
as a general-purpose framework to simplify the design of complex generative models and
the corresponding inference process. For example, they have enabled the use of symbolic
graphic renderers as forward models (Mansinghka et al., 2013) and incorporated deep neural
networks to help make inference more tractable (Kulkarni et al., 2015; Romaszko et al., 2017).

14. Notice, however, that these particular methods enforce an erhaustive partition of the image similar to
image segmentation methods.

15. Human perception is also said to be generative in the sense that we often perceive objects as coherent
wholes even when they are only partially observed (amodal completion; Michotte et al., 1991).
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Nonetheless, in the context of segregation, the amount of domain-specific engineering that
is still required limits their generality and applicability to other domains (similar to overly
relying on supervised labels from a particular domain).

An alternative approach to more accurately modeling complex data distributions is to
incorporate fewer assumptions, and rather parameterize the generative model with a neural
network that can learn a suitable generative process from many different observations. For
example, van Steenkiste et al. (2020) demonstrates how a (spatial) mixture model that
combines the output of multiple deep neural networks is able to learn to generate images as
compositions of individual objects and a background (see also Nguyen-Phuoc et al., 2020;
Ehrhardt et al., 2020; Niemeyer and Geiger, 2020). However, in order to perform segregation,
we must also be able to perform inference in these models, which can be very challenging.
This has been addressed by simultaneously learning an amortized iterative inference process
based on de-noising (Greff et al., 2016), generalized expectation-maximization (Greff et al.,
2017), iterative variational inference (Greff et al., 2019), slot attention (Locatello et al., 2020),
or parallel spatial (bounding-box) attention (Lin et al., 2020; Jiang and Ahn, 2020). Further
improvements can be made by assuming access to multiple different views to explicitly model
3D structure at a representational level (Chen et al., 2020; Nanbo et al., 2020). Even though
these methods still struggle at modeling complex real-world images, they are capable of
learning object representations that incorporate many of the previously mentioned desiderata
(e.g. common format, disentangled, modular), in a completely unsupervised manner.

4.4 Learning and Evaluation

The main challenge in segregation is in coping with the immense variability of useful objects
that depend on both task and context. We have argued that this effectively precludes
solutions that overly rely on supervision or domain-specific engineering. This raises the
question of how a useful notion of an object can be discovered mainly via unsupervised
learning (and later refined based on task-specific information). A key part of the answer is
to focus on the modularity of objects, which only depends on the statistical structure of the
observed data and interfaces directly with the functional role of objects as compositional
building blocks. Indeed, evidence suggests that human object perception is based on similar
principles (Orban et al., 2008; Chater, 1996). In the machine learning literature, several
approaches have also shown to be able to successfully leverage modularity to learn about
objects, either in combination with spectral clustering (Isola et al., 2014), attention (Burgess
et al., 2019), or by using neural mixture models (Greff et al., 2019), or an adversarial
formulation (Yang et al., 2020). Additionally, also focusing on other properties of objects
such as common fate (e.g. motion) may play an important role in further improving these
results (e.g. Pathak et al., 2017; Ranjan et al., 2019).

Regarding segregation dynamics, we have seen that it is important to provide architectural
inductive biases that help with dynamic information routing, e.g. in the form of attention or
masking specific parts of the input. Consistency and top-down feedback are mostly affected
by the interplay between segregation, representation, and composition, and it is difficult
to evaluate these properties in isolation. However, in order to facilitate this interaction, it
is critical that segregation is part of a fully-differentiable neural approach, which may be
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most problematic for clustering-based approaches to image segmentation and probabilistic
programs based on symbolic models.

Segregation is best evaluated in the context of a larger system, where the resulting
object representations form the foundation of structured models for inference, behavior, and
prediction. In this case, the ability to transfer learned object representations to other tasks,
and improving sample-efficiency (semi-supervised) is of particular interest (Wei et al., 2020).
Alternatively, when ground-truth information about objects is available, individual aspects
of segregation can be evaluated more directly. For example, when a pixel-level segmentation
is produced as part of segregation, then metrics such as AMI (Vinh et al., 2010) can be used
to compare against the ground-truth. This also provides a means to probe multi-stability for
inputs that are known to have multiple stable interpretations. Finally, consistency can also
be evaluated in this way, namely by measuring how stable the inferred notion of an object is
across a temporal sequence (e.g. object tracking).
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Figure 17: Three different objects (¥, o, %) appear in different pairings on a scale (a) and
(b). By evaluating their relationships (d), it can be inferred how the scale will tip in (c).

5. Composition

In this section, we look at the binding problem from the perspective of composition: building
structured models of the world that are compositional. Here we encounter the need for
variable binding: the ability to combine object representations and relations without losing
their integrity as constituents (as is needed for compositionality). As we have seen in
Section 2, compositionality is a core aspect of human cognition and underlies our ability to
understand novel situations in terms of existing knowledge. Similarly, in the context of Al,
it supports the systematic reuse of familiar objects and relations to dynamically construct
novel inferences, predictions, and behaviors, as well as the ability to efficiently acquire new
concepts in relation to existing knowledge.

Consider the sequence of observations in Figure 17, which allows you to infer the relative
weights of the three depicted objects (¥, e and % ). Several interesting observations can be
made. For example, from panel (a) you can tell that e is heavier than M, and likewise, that
% is heavier than e from panel (b). This information does not describe a property of any of
the individual objects, but rather a relation between them. On the other hand, it can still
be used to update the properties of the participating objects in response to new information
(e.g. the precise weight of M) or to respond to generic queries, such as answering which of
the objects is the heaviest. The latter, in this case, also requires comparing the weights of
and % (panel (c)). Notice how this is only possible through transitivity of the “heavier than’
relation, which allows you to combine the relations from panels (a) and (b) to infer that %
is heavier than

)

In the following, we take a closer look at how to enable neural networks to dynamically
implement structured models for a given task, with the ultimate goal of generalizing in a more
systematic (human-like) fashion. First, we focus on incorporating a compositional structure
that combines relations and object representations without undermining their modularity
(Section 5.1). Next, we consider how a neural network can dynamically infer the appropriate
structure and leverage it for the purpose of reasoning (Section 5.2). Towards the end, we
survey relevant approaches from the literature that address these aspects of composition
(Section 5.3).
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Figure 18: Three different ways in
O which structure can be defined in
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5.1 Structure

To implement structured models, a neural network must organize its computations to reflect
the desired structure in terms of objects and their relations. This structure is generally
described by a graph where nodes correspond to objects and edges to relations'®. By
representing relations separately (independent of object representations) it is possible to
freely compose relations and objects to form arbitrary structures (i.e. corresponding to
different graphs). However, certain types of relations may also impose constraints on the
structure to ensure internal consistency between relations (e.g. symmetry, transitivity).

5.1.1 RELATIONS

Relations encode the different computational interactions between the object representations
in a structured model. Many different types of relations are possible, including causal
relations (e.g. “collides with”), hierarchical relations (“is part of”), or comparative relations
(e.g. “bigger than”). Moreover, these general relations can often be specialized to include
the nature or strength of an interaction (e.g. “elastic collision”, “much bigger than”). To
efficiently account for this variability and support learning, relations are best encoded using
flexible (neural) representations. Similar to object representations, it may then also be
desirable to use a common format that provides a measure of similarity between relations
and ensures that they can be used interchangeably!”. The way structure is defined in terms
of relations may also have implications for their corresponding representations. When the
structure is given by a regular (directed) graph or a factor graph (see Figure 18 a & b),
then each relation is encoded by a single representation corresponding to either an edge
or a factor. Alternatively, it is possible to encode a relation with multiple representations
that correspond to the different roles that the participating objects play (see Figure 18 c).
Finally, it is important that relations are represented separate from and independent of the
object representations (see also role-filler-independence; Hummel et al., 2004). This enables
relations and objects to be composed in arbitrary ways to form a wide variety of (potentially
novel) structures.

16. In our discussion, we focus mainly on binary relations (e.g. A is bigger than B) that are well represented
by individual edges. However, keep in mind that it is also possible to represent higher-order relations
(e.g. A divides B from C), either by using a higher-order graph (e.g. a factor graph) or with the help of
auxiliary nodes (e.g. by adding a ‘division node’ with binary relations to A, B, and C).

17. Doumas et al. (2008) even argues that objects and relations should in fact use a shared ‘feature pool’
with which both can be described.
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Figure 19: Examples of different structural forms (Kemp and Tenenbaum, 2008) that each
can be used to define relations among objects and imply different patterns of generalization.

5.1.2 VARIABLE BINDING

To enable a single neural network to implement different structured models, it requires
a suitable ‘variable binding’ mechanism!'® that can dynamically combine modular object
representations and relations. Consider the classic example of Mary and John adapted from
Fodor and Pylyshyn (1988): Depending on a given task or context it may be more important
to consider that “Mary loves John”, that “John is taller than Mary”, or that “Mary hit John”.
In general, the number of possible structures that can be considered is potentially very
large, and it is, therefore, intractable to represent all of them simultaneously. Apart from
being dynamic, a suitable variable binding mechanism should also preserve the modularity
of individual object representations. This is critical to implement structured models that
are compositional, which ensures that the neural network generalizes systematically and
predictably with respect to the underlying objects.

In many cases, only a single level of variable binding that directly combines individual
object representations and relations is needed. However, in certain other cases (e.g. “Bob
knows that Mary loves John”) it may be required to first build composite structures that can
themselves act as ‘objects’, and that can then be combined recursively. When using a role-
based representation for relations, multiple levels of variable binding are also needed to avoid
ambiguity when a low-level object representation plays the same role in multiple relations.

5.1.3 RELATIONAL FRAMES

Each type of relation focuses on a particular aspect of the broader interaction among objects,
and thereby defines a particular relational frame that is internally consistent. Consider
again the example in Figure 17, which was concerned with the “heavier than” relation. This

18. The term variable binding is adapted from mathematics, where it refers to binding the free variables
in an expression to specific values. In our case, variables correspond to object representations that are
bound to the structure determined by the relations.
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corresponds to a relational frame of comparison that induces an ordering among the objects
in terms of their weight. In this case, an internally consistent ordering requires the relation
to be transitive (i.e. A> BN B > C = A > () and anti-symmetric (i.e. A > B = B ¥ A).
More generally, a relational frame is characterized by a particular type of relation, and by the
logical consequences (i.e. different entailments) that are implied by having (multiple) relations
of this type within the structure. We adopted the term relational frame from Relational
Frame Theory (RFT; see also Section 6.4), which distinguishes two types of entailment that
humans primarily use to derive (unobserved) relations: mutual entailment and combinatorial
entailment. Mutual entailment is used to derive additional relations between two objects
based on a given relation between them, e.g. anti-symmetry for a frame of comparison, or
symmetry for a frame of coordination (i.e. deriving B = A from A = B). Analogously,
combinatorial entailment is used to derive new relations between two objects, based on their

relations with a shared third object, e.g. transitivity for a frame of coordination (i.e. deriving
A=C from A= B and B=C).

Many different types of relational frames can be distinguished, which can be organized
into a number of general classes (Hughes and Barnes-Holmes, 2016), including ‘coordination’
(e.g. same as) , ‘comparison’ (e.g. larger than), ‘hierarchy’ (e.g. part of) , ‘temporal’ (e.g.
after), or ‘conditional’ (e.g. if then). Their corresponding rules for entailment give rise to
different structural forms (Kemp and Tenenbaum, 2008) among their relations, such as trees,
chains, rings, and cliques (see Figure 19). In this way, each relational frame can also be seen
as encoding a particular (systematic) pattern of generalization among the objects. Multiple
different relational frames may co-occur within the same structure, which allows for rules
of entailment to interact across different frames to facilitate more complex generalization
patterns (e.g. A= B and B > C implies A > C).

5.2 Reasoning

The appropriate structure for a model depends on the task and context, and should therefore
be dynamically inferred by the neural network to focus only on relevant interactions between
the objects. Likewise, it is important to consider the computational interactions between
relations and object representations, in order to make use of the inferred structure for
prediction and behavior.

5.2.1 RELATIONAL RESPONDING

To leverage a given structure in terms of relations between object representations, a neural
network must be able to organize its computations accordingly. A common use case involves
adjusting the (task-specific) response to an object based on its relation to other objects
(relational responding). For example, if it is known that M is heavier than e, then learning
that e is too heavy for a particular purpose (task) also changes your behavior concerning

More generally, relational responding of this kind may involve evaluating multiple
(derived) relations between objects and combining information across different relational
frames. Another use case is in implementing so-called structure sensitive operations (Fodor
and Pylyshyn, 1988) that require responding directly to the structure given by the relations
(independent of the object representations). This is especially important for solving abstract
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reasoning tasks, e.g. when applying the distributive law to a given mathematical expression
(i.e. turning a - (b+c¢) intoa-b+a-c).

A natural choice for facilitating relational responding in a neural network is to organize
its internal information flow (i.e. computations) in a way that reflects the graph structure
of relations and objects. This ensures that newly available information affects the object
representations in accordance with the dependency structure implied by the relations (and
therefore also with the generalization patterns due to the relational frames). Most information
processing of this kind can then be implemented in terms of only local interactions between
objects representations and relations, which maximally leverages their modularity. These
local interactions, which can either be instantaneous (e.g. collides with) or persistent (e.g.
is part of), can facilitate both directed (e.g. for causal relations) and bidirectional (e.g.
for comparison) information flow. On the other hand, local interactions are ill-suited for
implementing structure sensitive operations that require simultaneously considering multiple
different parts of the larger structure.

5.2.2 INFERRING STRUCTURE

Inferring the most desirable structure is an inherently difficult task, which requires making
many individual choices at the level of relations that all have to be coordinated to ensure
that the structure as a whole is useful. One important guiding constraint is the internal
consistency of the structure with respect to the rules of entailment as implied by the choice
of relational frames. Inconsistencies between the observed information and predictions by the
structured model are another indicator of a wrong or incomplete structure. The ‘garden-path’
sentence “The old man the boat.” (see Figure 20) provides a good example for a violation
of expectations, which then triggers a revision of the structure. Upon first reading, “The
old man” is likely parsed as the subject of the sentence, which implies a structure where the
next word is expected to be a verb. However, since “the boat” is not a verb (and therefore
does not match this expectation), the sentence cannot be parsed in this way. The problem
is resolved by revising the structure so that it takes “The old” as the subject and “man” as
the wverb of the sentence. This example also illustrates the need for collaboration between
composition and segregation: It was the initial grouping of “The old man” as a single object
that gave rise to inconsistencies at the level of structure, which could only be resolved by
also changing the outcome of the segregation process. Hence, it is vital that the process
of inferring structure is able to provide (top-down) feedback to help guide the process of
segregation.

Inferring structure at the level of individual relations between objects involves making
choices about the type of relation, or which of the properties of an object to relate. These
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decisions can be guided by contertual cues from the environment, such as the scales in
Figure 18 that trigger a comparison of the objects in terms of their masses (as opposed to e.g.
their relative position or shape). Inferring a relation between objects may also be triggered
upon discovering their relation to other objects (e.g. due to combinatorial entailment).
However, for the sake of efficiency it may not always be desirable to explicitly represent
such relations, but rather model their effect implicitly due to appropriately organizing the
computations of the network (i.e. relational responding). More generally, the process of
inferring structure has to interface closely with the mechanism for variable binding (i.e. for
dynamically combining modular object representations and relations in a way that preserves
their modularity).

5.3 Methods

To succeed at composition, a neural network requires a mechanism for organizing its internal
computations in a way that facilitates relational responding based on the desired structure. A
natural approach is to incorporate the structure at an architectural level by focusing directly
on the local interactions between objects representations and relations. Alternatively, one can
also use a more generic (recurrent) neural network “processor” that (sequentially) operates
on a representation of the desired structure. In the following we will review both of these
different approaches, focusing in particular on relational responding and the difficulty of

inferring structure!.

5.3.1 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs; Scarselli et al., 2009; Pollack, 1990) are a promising approach
for composition that incorporates the desired structure for relational responding at an
architectural level (see Wu et al. 2020 for an overview). At a high level, a GNN is a neural
network that is structured according to a graph whose edges determine how information
is exchanged among the nodes. In the context of composition, nodes correspond to object
representations and edges to relations, which together form the structure, i.e. using (static)
variable binding at the architectural level. A GNN fundamentally distinguishes two kinds
of information processing, one that requires evaluating the relations between the object
representations, and another that is concerned with combining (aggregating) the effect of
the incoming relations to update the object representations (Battaglia et al., 2018). By
implementing these in a general way that applies equally to different objects and relations,
a GNN can accommodate many different structures. In general, the local information
processing in a GNN ensures that information affects the object representations in a way
that follows the dependency structure implied by the relations (relational responding).

GRAPH CONVOLUTIONAL NETWORKS Graph Convolutional Networks (GCNs) are a type
of GNNs based on a generalization of convolutional neural networks (which operate on
grids) to non-Euclidean geometries such as graphs (Bronstein et al., 2017). A GCN consists

19. We note that the problem of inferring structure has also received considerable attention in the causality
literature, often specifically focusing on cause-effect discovery (e.g. see Hoyer et al. (2009); Lopez-Paz
et al. (2015); Peters et al. (2016) or Peters et al. (2017) for an overview). Generally, we expect structural
causal models to become highly relevant for composition, due to their robustness under intervention and
utility for reasoning about hypothetical or unobserved scenarios (Pearl, 2019; Schélkopf, 2019).
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of several layers that each produce an updated set of node representations by applying
graph-convolutions to a local neighborhood in the graph. They have been successfully applied
to a wide variety of graph-structured data including social networks (Hamilton et al., 2017),
citation networks (Kipf and Welling, 2017), 3D surfaces (Litany et al., 2018), knowledge base
completion tasks (Schlichtkrull et al., 2018), and bio-chemical modeling (Atwood and Towsley,
2016). However, while they excel at modeling large-scale graphs, one disadvantage of GCNs
in the context of composition is that they assume a given graph in the form of an adjacency
matrix and node representations as input. For the purpose of composition, scalability is
less important since we are most interested in relatively small graphs (restricted by working
memory) that are composed dynamically. On the other hand, some GCNs (e.g. Henaff et al.,
2015; Lee et al., 2019) have used a mechanism for coarsening (down-sampling) the graph
between layers, to reduce computational complexity, which could provide a mechanism for
refining the structure (i.e. structure inference).

MESSAGE PASSING NEURAL NETWORKS Message Passing Neural Networks (MPNNs;
Gilmer et al., 2017) iteratively update the node representations of a given graph by exchanging
messages along its edges (until convergence)?”. Compared to GCNs, both the graph structure
and weights are shared across layers (iterations), and the messages (corresponding to the
incoming relations) are typically implemented as a pairwise non-linear function of both
adjacent node representations. Hence, edges play a more prominent role in information
processing and by explicitly considering pair-wise interactions it is easier to model comparative
relations between objects. MPNNs were initially conceived as a generalization of RNNs
to graph-structured inputs (Sperduti and Starita, 1997; Gori et al., 2005) and have since
been adapted to consider modern deep neural networks (Li et al., 2016). A more general
framework that accommodates both MPNNs and GCNs was proposed in Battaglia et al.
(2018), which additionally includes a global representation of the graph that interacts with all
the nodes and edges (and may thereby more easily provide for structure-sensitive operations).

MPNNs have been shown to generalize more systematically (compared to standard neural
networks) on many different tasks that require relational responding in terms of objects,
including common-sense physical reasoning (Chang et al., 2017; Battaglia et al., 2016; Janner
et al., 2019), hierarchical physical reasoning (Mrowca et al., 2018; Li et al., 2020; Stani¢
et al., 2020), visual question answering (Santoro et al., 2017; Palm et al., 2018), abstract
visual reasoning (Andreas, 2019), natural language processing (Tai et al., 2015), physical
construction (Hamrick et al., 2018) or multi-agent interactions (Sun et al., 2019). Similar to
GCNs, the desired structure may either be specified directly or inferred dynamically based
on some heuristic, e.g. based on proximity (Chang et al., 2017; Mrowca et al., 2018) or a
language parser (Tai et al., 2015). Alternatively, MPNNs have been used to implement a
relational inductive bias based on a generic structure, e.g. by assuming it to be fixed and
fully connected (as in Relation Networks; Santoro et al., 2017). In this case, information can
still be exchanged among all the nodes, although the generalization implied by having the
correct structural dependencies is lost (e.g. for entailment).

A more desirable approach is to (dynamically) infer the desired structure, although this
is challenging due to the discreteness of graphs and difficulties in comparing them efficiently.
One approach is to first learn a continuous embedding for all possible graph structures and

20. Recently, MPNNs were extended to allow for continuous updates (Deng et al., 2019; Liu et al., 2019).
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then optimize for the right structure in the corresponding space, e.g. using VAEs (Kusner
et al., 2017; Zhang et al., 2019), or GANs (Yang et al., 2019). The other approach is to
directly infer the connectivity between nodes iteratively based on message passing, e.g. for a
fixed number of nodes as in Neural Relational Inference (NRI; Kipf et al., 2018) or adaptively
as in Graph Recurrent Attention Networks (GRANSs; Liao et al., 2019).

APPROACHES BASED ON SELF ATTENTION Graph Neural Networks based on self-attention
are closely related to MPNNs. The main difference to MPNNSs is that they use self-attention
to compute a weighted sum of the incoming messages (based on the relations) for updating
the node representations. This provides a useful mechanism for dynamically adapting the
information routing (here a kind of soft variable binding) and thereby infer the desired
structure for a fixed set of nodes. However, note that this may be computationally inefficient
because it still requires computing all possible messages and only affects which of them
end up being used in the final summation. Wang et al. (2018) makes use of a kind of
(learned) dot-product attention to infer relations between spatial slots. In this case, the
attention coefficients are computed for pairs of nodes while the messages are based only on
a single node, which may make it more difficult to implement multiple different relations.
The use of multiple attention heads (i.e. as in Vaswani et al., 2017) may help mitigate this
issue and has been successfully applied for relational reasoning about objects (Zambaldi
et al., 2019; van Steenkiste et al., 2020; Goyal et al., 2019; Santoro et al., 2018a), citation
networks (Velickovié et al., 2018), question answering (Dehghani et al., 2019), and language
modeling (Devlin et al., 2019; Brown et al., 2020). Indeed, Transformers themselves may
already be viewed as a kind of graph network (Battaglia et al., 2018). Alternatively, multiple
different relations could be learned by also conditioning the message on the receiving object
representation when using attention e.g. as in R-NEM (van Steenkiste et al., 2018). The idea
of using (self-)attention as a mechanism for inferring structure (and dynamic information
routing) has also been applied outside the scope of graph neural networks, e.g. in pointer
networks (Vinyals et al., 2015), energy-based models (Mordatch, 2019), and capsules (Sabour
et al., 2017; Kosiorek et al., 2019).

5.3.2 NEURAL COMPUTERS

Neural computers offer an alternative approach to composition by learning to perform
reasoning operations sequentially on some appropriate representation of the desired structure.
In this case, the ‘processor’ is typically given by an RNN that interfaces with other components,
such as a dedicated memory, via a prescribed set of differentiable operations. Compared to a
GNN, the architecture of a neural processor is more generic and does not directly reflect the
desired dependency structure in terms of relations between object representations. Instead,
by considering structure at a representational level, it can more easily be adjusted depending
on task or context. Similarly, by having a central processor that is responsible for relational
responding (as opposed to a distributed GNN) it is easier to support operations that require
global information (e.g. structure-sensitive operations). On the other hand, the ability of
neural computers to learn more general algorithms comes at the cost of a weaker inductive
bias for relational reasoning specifically. Hence, it is often necessary to incorporate more
specialized mechanisms to efficiently learn algorithms for relational responding that generalize
in agreement with the desired structure.

37



GREFF AND VAN STEENKISTE AND SCHMIDHUBER

The most common type of neural computer consists of an RNN (the processor) that
interfaces with an external differentiable memory component. A dedicated memory component
provides an interface for routing information content (now stored separately) to the variables
that take part in processing (i.e. the program executed by the RNN processor). Indeed,
while an RNN can in principle perform any kind of computation using only its hidden state
as memory (Siegelmann and Sontag, 1991), its dual purpose for representing structure and
information processing makes it difficult to learn programs that generalize systematically (Lake
and Baroni, 2018; Csordas et al., 2020). Early examples of memory-augmented RNNs (Das
et al., 1992; Mozer and Das, 1993) use a continuous adaptation of stacks based on the
differentiable push and pop operations introduced by Giles et al. (1990) (cf. Joulin and
Mikolov, 2015 for an alternative implementation). Although a stack-based memory has
proven useful for learning about the grammatical structure of language(e.g. Das et al., 1992)),
its utility for more general reasoning tasks is limited by the fact that only the top of the
stack is accessible at each step.

The addressable memory used in the Neural Turing Machine (NTM; Graves et al., 2014)
offers a more powerful alternative, which can be accessed via generic read and write operations
(but see memory networks for a read-only version; Weston et al., 2015; Sukhbaatar et al.,
2015). In this case, all memory slots (and thereby all parts of the structure) are simultaneously
accessible through an attention mechanism (responsible for variable binding) that supports
both content- and location-based addressing. Together, these operations have shown to
provide a useful inductive bias for learning simple algorithms (e.g. copying or sorting) that
generalize to longer input sentences (i.e. more systematically). Additional memory addressing
operations, e.g. based on the order in which memory locations are accessed (DNC; Graves
et al., 2016), based on when they were last read (Munkhdalai and Yu, 2017), or based on
a key-value addressing scheme (Csordas and Schmidhuber, 2019) may confer additional
generalization capabilities that are especially relevant for relational reasoning. For example,
the DNC has shown capable of learning traversal and shortest path algorithms for general
graphs by writing an input sequence of triples (‘from node’, ‘to node’, ‘edge’) to memory,
and iteratively traverse this structure using content-based addressing (Graves et al., 2016).
Moreover, given a family tree consisting of ancestral relations between family members, the
DNC can successfully derive relationships between distant members, which demonstrates a
form of combinatorial entailment.

Other memory-based approaches take a step towards GNNs by updating each memory
location in parallel (Henaff et al., 2017; Kaiser and Sutskever, 2016) or incorporate spe-
cialized structure for reasoning into the processor, e.g. for the purpose of visual question
answering using a read-only memory (knowledge base; see Hudson and Manning, 2018).
Alternatively, certain (Hebbian) forms of fast weights (Schmidhuber, 1992a) can be viewed
as a type of internal associative memory based on previous hidden states (Ba et al., 2016).
TPR-RNN (Schlag and Schmidhuber, 2018) extends this idea by equipping a fast-weight
memory with specialized matrix operations inspired by Tensor Product Representations
(TPR; Smolensky, 1990), which makes it easier to respond to relational queries. In contrast,
Reed and de Freitas (2015) and Kurach et al. (2016) take a step towards modern computer ar-
chitectures by, respectively, incorporating a call-stack with an explicit compositional structure
or a mechanism for manipulating and dereferencing pointers to a differentiable memory tape.
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5.4 Learning and Evaluation

The problem of composition is about implementing structured models with neural networks
that take advantage of the underlying compositionality of object representations. We have
argued that this requires incorporating mechanisms for dynamic variable binding (such as
attention), and for dynamically organizing internal information processing for the purpose of
relational responding. Regarding the latter, the choice of a suitable mechanism is less clear,
although evidence indicates that a GNN-based approach is promising.

With the right mechanisms in place, it is reasonable to expect that relations, relational
frames, and structure inference can all be learned (jointly with segregation and representa-
tion) via mostly unsupervised learning (Kemp and Tenenbaum, 2008). On the other hand,
learning about relations in particular may be challenging, since they can never be observed
directly, but always occur in conjunction with concrete objects. Indeed, young children
initially reason primarily based on the perceptual similarity between objects and learn to pay
attention to their relational similarity only at a later stage (i.e. after undergoing a “relational
shift”; Gentner and Rattermann, 1991). A key enabler for children to acquire progressively
more general relations is multi-exemplar training: repeated exposure to the same relation,
but in combination with different fillers (Barnes-Holmes et al., 2004; Luciano et al., 2007).
This idea has been successfully adapted for learning abstract relations using spiking neural
networks (Doumas et al., 2008), and shares similarities to more recent contrastive learning ob-
jectives that require a neural network to infer relations from a dataset of positive and negative
pairings (Kipf et al., 2020; Hadsell et al., 2006). The ability to interact with the environment
may additionally enable an (embodied) agent to autonomously acquire multi-exemplar data
for a particular relation (Schmidhuber, 2015; Haber et al., 2018). An alternative approach
to learning composition is to view dynamic structure inference as a meta-learning problem
and directly optimize for (systematic) generalization, e.g. by minimizing the generalization
regret in face of deliberate non-stationarity (Bengio et al., 2019).

The ultimate goal of composition is to facilitate more systematic generalization and
several methods have been proposed that measure different aspects of this ability. A pro-
totypical approach is to evaluate a trained system on a set of held-out combinations of
parts (objects) as an approximate measure of systematicity (Santoro et al., 2018b; Lake and
Baroni, 2018; Hupkes et al., 2020). A similar strategy can also be used to assess the capacity
for interpolation or extrapolation, i.e. by varying the number of parts or range of values.
Additionally, Hupkes et al. (2020) propose to measure (systematic) “overgeneralization errors”
that are indicative of a bias towards a particular pattern of generalization.
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6. Insights from Related Disciplines

Object perception and the symbolic nature of human cognition have been studied from
various angles in Neuroscience, Psychology, Linguistics, and Philosophy. These complementary
perspectives provide valuable inspiration for addressing the binding problem and we have
frequently drawn upon their insights throughout this survey. While an exhaustive overview
is outside the scope of this survey, we provide a brief discussion of the areas that were most
influential to the development of the conceptual framework presented here. These fields have
a lot more to offer and we encourage the reader to further explore this literature, for example
by using the pointers and connections provided here as entry-points.

6.1 Gestalt

Gestalt Psychology describes many aspects of the subjective experience of perceptual organi-
zation (see Wagemans et al., 2012a,b for an overview). It is based on the observation that
the perception of ‘wholes’ (or Gestalten?!) can not be adequately described as a bottom-up
agglomeration of more primitive percepts, but rather emerges in its entirety at once. Similarly,
the perception of a Gestalt can fill in missing information, be invariant to transformations,
and alternate discretely between multiple stable interpretations (see Figure 22). This holistic
(as opposed to analytic; see Section 6.2) view of perception, was later summarized by Kurt
Koffka as: “The whole is other than the sum of its parts” (Koffka, 1935)22. The concept of
a Gestalt closely resembles our notion of objects and Gestalt Psychology was arguably the
first systematic investigation of human object perception (following the work by Wertheimer,
1912).

The best-known results of Gestalt research are their principles of perceptual grouping (also
known as Gestalt Laws; see Figure 21 for an overview). They describe which stimulus-cues
influence the perceived grouping of a set of discrete elements (Wertheimer, 1923; Wagemans
et al., 2012a). They include among others: the law of proximity (closeby pieces tend to

21. “Gestalten” is plural of the German word “Gestalt” meaning “form” or “shape”.
22. Frequently misquoted as “The whole is greater than the sum of its parts”.
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Figure 22: Emergence: At first encounter this
image (a reproduction of the classic image from
Gregory 1970) is perceived as an unstructured
collection of black patches on white background.
At some point perception shifts and suddenly
reveals the image of a Dalmatian dog sniffing
the ground. Perception of the whole arises at
once, and not through hierarchically assembling
of parts, such as legs, ears, etc.
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be grouped), the law of similarity (similar pieces tend to be grouped), the law of closure
(preference for closed contours), the law of symmetry (preference for symmetric objects) and
the law of common fate (what moves together groups together). Several other Gestalt laws
have been found over the years (Alais et al., 1998; Palmer, 1992; Palmer and Rock, 1994),
including for other sensory modalities, such as audio (Bregman, 1994) and tactile (Gallace
and Spence, 2011). Note that the laws of proximity and common fate can be seen as special
cases of the law of similarity (with position and movement respectively being the compared
attributes). In fact, it has been argued that the Gestalt Laws are all special cases of a single
information-theoretic grouping principle (Hatfield and Epstein, 1985). Here the idea is that
a ‘good’ Gestalt is one with a lot of internal redundancy (Attneave, 1971), and thus that the
likelihood of a particular grouping is inversely proportional to the amount of information
required to describe the Gestalt (Hochberg and McAlister, 1953)23.

For our purposes, the existence of these general principles and their prevalence in multiple
sensory domains is very interesting. It makes plausible the idea of a general segregation

23. There is disagreement about how to quantify information and the issue of simplicity versus likelihood has
been debated extensively, though they might turn out to be identical (Chater, 1996)
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mechanism (e.g. based on modularity) that can generalize to novel objects and can help to
steer the search for corresponding inductive biases. However, note that Gestalt Psychology
has been criticized for its emphasis on subjective experience and the lack of successful
physiological or mechanistic predictions (e.g. Ohlsson, 1984; Treisman and Gelade, 1980; but
see Jikel et al., 2016). Feature Integration Theory arose as a countermovement to provide
an alternative, more mechanistic, account of the grouping process.

6.2 Feature Integration Theory

Feature Integration Theory (FIT) provides a model of human visual attention for perceiving
objects (see Wolfe, 2020 for an overview). It is based on the idea that conscious object
perception (i.e. as we experience it) is preceded by subconscious (mostly) bottom-up processing
of visual information. FIT is motivated by a number of empirical findings, such as the different
speeds at which humans are able to locate a visual target among a set of distractors (visual
search). In this case, search is fast (subconscious and in parallel) if the target can be identified
by a single characteristic feature (e.g. a particular orientation), which essentially causes it to
pop-out (e.g. top panel in Figure 23a). In contrast, when the target is characterized by a
conjunction of features, search becomes slow and requires serial attention (e.g. bottom panel
in Figure 23a). Another important empirical finding occurs when attention is overloaded
(or directed elsewhere), which sometimes causes humans to perceive illusory conjunctions:
illusory objects that are the result of wrongly combining features from other objects (Treisman
and Gelade, 1980; Figure 23c).

Feature Integration Theory distinguishes two stages of processing (see Figure 23b). First,
a pre-altentive stage that registers features across the visual field (e.g. shape, color, size, etc.)
automatically in parallel, and represents them in independent feature maps (‘free-floating’).
Then, at the feature integration stage, a ‘spotlight of attention’ is used to bind the features
in these separate maps to form feature conjunctions in the form of objects (Kahneman et al.,
1992). While initially objects are linked to specific locations as attention is focused on them,
they may later be consolidated to form a more location invariant representation (Treisman
and Zhang, 2006). Since its initial conception (Treisman, 1977; Treisman and Gelade, 1980),
FIT has been refined and extended in various ways to account for new insights about human
perception. There is now substantial evidence that the features of objects outside the focus of
attention are more structured than initially assumed. For example, Humphrey and Goodale
(1998) find that orientation and color are already represented jointly in the absence of
attention (see also Vul and MacLeod (2006)). Similarly, Vul et al. (2019) find evidence for
pre-attentive binding of color to parts based on the hierarchical (and geometric) structure of
objects.

FIT has been a highly influential model of human visual attention and could serve as
further inspiration for attention-based segregation. While FIT and Gestalt Psychology offer
seemingly competing views of human perception, it has also been argued that these analytic
and holistic views in fact complement each other (Prinzmetal, 1995). However, in either case,
it is unclear how certain aspects of FIT should be implemented, such as top-down feedback
to guide attention, especially in the context of non-visual domains (Spence and Frings, 2020).
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Figure 23: Left: Two examples of visual search tasks, an easy one where the target “pops-out”
(top) and a hard one that requires serial search. Middle: Diagram of processing operations
involved in the perception of objects according to FIT. Right: Two example tasks that have
been used to demonstrate illusory conjunctions. Note, that the effect cannot be reproduced
in print because it relies on showing the images very briefly.

6.3 The Binding Problem in Neuroscience

We have adapted the term binding problem from neuroscience, where it refers to a limitation
of our understanding regarding information processing in the brain. In particular, its highly
distributed nature raises the question of [...| how the computations occurring simultaneously
in spatially segregated processing areas are coordinated and bound together to give rise to
coherent percepts and actions” — Singer (2007). For example, how is it that we typically
do not wrongly mix the properties belonging to different objects, i.e. experience illusory
conjunctions? The binding problem in neuroscience is thus concerned with understanding
the mechanism(s) by which the brain addresses these challenges.

Several mechanisms have been proposed that range from static binding using conjunc-
tion cells (Ghose and Maunsell, 1999) to dynamic information routing through dedicated
circuitry (Olshausen et al., 1993; Zylberberg et al., 2010) or attention using common location
tags (Reynolds and Desimone, 1999; Robertson, 2005). A particularly promising hypothesis
is the temporal correlation hypothesis, which holds that temporal synchrony of firing patterns
is the mechanism responsible for binding (Milner, 1974; von der Malsburg, 1981). In this case,
neurons whose activation encodes features of one object (e.g. color and shape) are expected
to fire in synchrony (oscillating phase-locked), while neurons encoding features belonging
to different objects would be out of phase with each other (see also Section 3.3.2). Other
neurons are naturally capable of responding to this form of grouping since neuronal firing
and synaptic learning (STDP; Caporale and Dan, 2008) are both sensitive to the relative
timing of incoming activations (pre-synaptic spikes). Moreover, there is diverse experimental
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“dog” Figure 24: In an early experiment, Sidman (1971) examined a
Y\ < boy that could match spoken words to pictures and to name
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to pictures (green). In this case, the dotted arrows represent
relations that were never explicitly taught, and which were
derived based on reflexivity (red) and transitivity (green) of the
underlying equivalence relation (Sidman et al., 1989). Later, it
was found that such derived relationships play an important
role in systematically altering human behavior in response to
feedback from the environment.
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data in support of this interpretation relating synchronized oscillatory behavior of individual
neurons to perceptual grouping (Usher and Donnelly, 1998; Tallon-Baudry and Bertrand,
1999), attention (Niebur et al., 2002), and sensory-motor integration (Pesce Ibarra, 2017;
Engel and Fries, 2010; see also Uhlhaas et al., 2009 for an overview).

In general, the role of synchrony in neuronal binding is still controversial. For example,
it has been debated whether synchrony is necessary (Merker, 2013; Riesenhuber and Poggio,
1999), fast enough (Ray and Maunsell, 2015; Palmigiano et al., 2017), and is capable of
providing sufficient (temporal) resolution?* for separating multiple different objects. Likely,
the brain does not rely on a single mechanism for addressing the binding problem but on
a combination of several. In either case, it is clear that temporal synchronization plays an
important role in neural information processing, and perhaps one that is still unaddressed in
current artificial neural networks.

6.4 Relational Frame Theory

Relational Frame Theory (RFT; Hayes et al., 2001; Hughes and Barnes-Holmes, 2016) is
a theory of behavioral psychology about relating (i.e. responding to one event in terms of
another) and offers interesting insights about composing and systematic generalization in
humans. RFT was originally conceived to explain “stimulus equivalence” (Sidman, 1971): The
emergent behavior to respond to events and objects through a derived “sameness” relation
that has not been explicitly taught or reinforced. For example, when taught a correspondence
between spoken words and pictures, and between spoken words and written words, children
were able to match written words and pictures (see Figure 24). In a similar experiment,
Dymond and Barnes (1995) showed that subjects were able to use such derived equivalence
relations to “correctly” respond to stimuli for which no explicit feedback was provided.

RFT is based in behaviorism, focusing on observable behavioral responses that can be
altered through reinforcement or punishment (learned operants). It argues that relational

24. In this case, the temporal accuracy of synchronization directly relates to the capacity of working
memory (Wilhelm et al., 2013). The more objects need to be represented simultaneously, the more
difficult it is to prevent cross-talk from corrupting and destabilizing individual representation, and such
gradual decay has indeed been observed in Alvarez and Franconeri (2007).
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responding 2’ is a learned operant behavior, which can be acquired through repeated exposure
to tasks that require responding to a particular relation (to receive positive feedback) but that
varies across stimuli and contexts. Relational responding can be subdivided into different
relational frames (see also Section 5.1.3), which each focus on a particular kind of relationship
and differ in terms of three key properties: mutual entailment, combinatorial entailment,
and transformation of stimulus functions. For example, the stimulus equivalence that was
observed in Figure 24 corresponds to a particular relational frame with symmetry as mutual
entailment and transitivity as combinatorial entailment. In this case, ‘transformation of
stimulus function’ implies that when the reward associated with an object or event changes,
this also alters the expected reward of other related events or objects in the same manner.
Other examples include the relational frames of ‘opposition (e.g. opposite to) , ‘comparison’
(e.g. larger than), ‘hierarchy’ (e.g. part of) , ‘temporal order’ (e.g. after), or ‘condition’ (e.g. if
then). It is easy to see how a vast number of possible relational structures can be constructed
in this way, of which only very few are relevant in any given situation. RFT argues that
people use (bottom-up) contextual cues from the environment to infer which relations when
to apply.

Given the immediate relevance of RFT to systematic generalization and composition, it
is surprisingly absent from the machine learning literature. This is likely in part due to the
relative unpopularity of behaviorism compared to cognitive psychology. However, another
reason may be due to the controversy that surrounds certain aspects of RF'T, such as the
clarity of the involved concepts and its novelty with regards to previous accounts of stimulus
equivalence (Gross and Fox, 2009). Nonetheless, we find that RFT offers a useful conceptual
framework for the problem of composition, and indeed it has helped shape our understanding
of relational reasoning. Going forward, we would like to emphasize the value of RFT as a
source of experimental designs to isolate and evaluate relational reasoning capabilities in
neural networks.

6.5 Compositionality in Linguistics

Like many others in the field, we have used the term compositionality without giving a proper
definition. Related terms such as systematicity, systematic generalization, and combinatorial
generalization, unfortunately, do not provide a good alternative either. A good starting point
for a definition may therefore be the so-called principle of compositionality from the field of
linguistics:

“The meaning of a complex expression is determined by its structure and the
meanings of its constituents.” — Szabo (2017)

Apart from its intuitive appeal, the main reason for its widespread adoption is the lack of a
convincing alternative. However, there remains considerable disagreement about the exact
phrasing and many interpretations of the principle exist (Szabo, 2017).

25. RFT distinguishes between two types of relational responding: Non-Arbitrarily Applicable Relational
Responding (NAARR), which is only concerned with relations among physical attributes (e.g. choosing
the larger among multiple objects), and the more general Arbitrarily Applicable Relational Responding
(AARR) that allows for arbitrary relations between stimuli (or events). While NAARR is also encountered
in animals, AARR has thus far only been observed in humans.
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There are three main arguments for this notion of compositionality, namely productivity,
systematicity, and efficiency of language. Productivity refers to the capacity of language to
“make infinite use of finite means” (von Humboldt, 1999), i.e. the ability to form and under-
stand a theoretically unbounded number of entirely novel sentences given only limited vocab-
ulary and training. Systematicity is the observation that “the ability to produce/understand
some sentences is intrinsically connected to the ability to produce/understand certain oth-
ers” (Fodor and Pylyshyn, 1988). For example, anyone who understands “brown dog” and
“black cat” also understands “brown cat”. Finally, the fact that we are able to communicate
in real-time, puts clear bounds on the computational complexity of interpreting spoken
language (Szabo, 2017). The principle of compositionality is thus an inference to the best
explanation because it is difficult to imagine language being productive, systematic, and
computationally efficient without its semantics being somehow compositional in the above
sense.

Critique of the principle of compositionality, interestingly, ranges from it being too broad
to it being too narrow. On the one hand, Zadrozny (1994) demonstrates how a function can be
constructed that maps arbitrary meaning to any expression without violating compositionality.
This suggests that the principle is formally vacuous unless the class of admissible functions
is somehow restricted to exclude such a construction. On the other extreme, many have
found violations of the principle in everyday language. Indeed, counterexamples such as
ambiguities (“We saw her duck.”), references (“this dog”), and irony (“objectively the best
example”) require context and thus contradict the principle. Similarly, idioms (“break the ice”)
provide examples of obvious exceptions where the meaning differs substantially from a naive
composition of the parts. However, few consider these problems severe enough to abandon
the principle of compositionality entirely, and indeed most linguists have come to accept it as
a guiding principle for developing syntactic and semantic theories. Though it was originally
conceived for language, many believe that the principle of compositionality applies equally
(or even more so) to mental representations (Butler, 1995; Fodor, 1975). A similar belief also
underlies the interest in compositionality for understanding and encouraging productivity,
systematicity, and efficient inference in neural networks (Santoro et al., 2018b; Hupkes et al.,
2020; Andreas, 2019).
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7. Discussion

The ultimate motivation of this work is to address the shortcomings of neural networks
at human-level generalization. To this end, we have developed a conceptual framework
centered around compositionality and the binding problem. Our analysis identifies the
binding problem as the primary cause for these shortcomings, and thereby paves the way
for a single unified solution. It rests on several (implicit) assumptions regarding the nature
and importance of objects and the learning capabilities of neural networks. In the following,
we explicate several of these assumptions and use them to contrast with other conceptual
frameworks aimed at addressing (certain aspects of) human-level generalization.

One of the main assumptions behind our work is that objects are key to compositionality
and that the latter plays a fundamental role in generalizing more systematically. This
perspective has a long history in connectionism that goes back to at least Fodor and Pylyshyn
(1988); Marcus (2003) and has been repeatedly emphasized (e.g. Smolensky, 1990; Bader
and Hitzler, 2005), especially in recent years (e.g. Lake et al., 2017; Battaglia et al., 2018;
Hamrick, 2019; Garnelo and Shanahan, 2019). However, our perspective stands out in that
we focus on integrating symbolic reasoning and sensory grounding, which requires adopting
a very broad notion of objects that spans all levels of abstraction. Importantly, we assume
that objects at any level of abstraction are essentially the result of decomposing a given
problem into modular building blocks, and thus share the same underlying computational
mechanisms. It is our view that this broad notion of objects is necessary to accommodate
the generality of human reasoning from concrete and physical to abstract and metaphorical.

Throughout this paper, we have assumed that learning objects in an unsupervised way is
both feasible, and can be integrated directly into neural networks. Further, we have argued
that unsupervised learning is, in fact, indispensable, due to the required scope and flexibility
of objects, which renders adequate supervision or engineering infeasible. However, as we
have seen (and discuss further below), evidence indicates that object representations are
unlikely to emerge naturally simply by scaling current neural networks in terms of model
size or by providing additional data. Here we have proposed to address this problem by
incorporating a small set of inductive biases to enable neural networks to process information
more symbolically, while also preserving the crucial benefits of end-to-end learning (Sutton,
2019).

Closely related to the mental framework proposed here is that of Lake et al. (2017), which
is similarly concerned with addressing human-level generalization. They too emphasize the
importance of (physical) objects, compositionality, and dynamic model building, although in
their view these are only three instances of so-called ‘core ingredients’ necessary for realizing
human intelligence. Other ingredients include an intuitive understanding of psychology as
a form of “start-up software”, learning to learn, causality, and ingredients focusing on the
speed of human comprehension. Hence, Lake et al. (2017) advocate the use of specialized
inductive biases inspired by cognitive psychology, and using neural networks as a means for
implementing fast inference within the context of larger structured models. In contrast, we
argue that it is more fruitful to enable neural networks to directly implement structured
models. This enables us to tackle a single shared underlying problem (the problem of dynamic
binding) and, as much as possible, let learning account for the remaining, domain-specific,
aspects of human cognition (e.g. psychology, physics, causality). Note that we do not wish
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to argue against incorporating specialized inductive biases (which may still be beneficial),
but rather advocate that learning should take priority whenever possible. Compared to Lake
et al. (2017) our focus on integrating high-level reasoning with low-level perception in neural
networks puts a lot more emphasis on symbol grounding and the associated problem of
segregation. This is also reflected by our emphasis on end-to-end learning, whereas Lake et al.
(2017) appear to argue for separating neural and symbolic information content, somewhat
akin to hybrid approaches (Bader and Hitzler, 2005).

Our framework also relates to several other areas of machine learning research that aim
towards human-level generalization. However, they center around composition and have
mostly neglected the problem of segregation (and representation). For example, the field of
causality is concerned with inferring and reasoning about structural causal models, which
offer a particular kind of compositionality that is assumed to be essential to human-level
generalization (Pearl, 2009; Peters et al., 2017). Using our terminology, structural causal
models can be viewed as a specific set of relational frames composed of ‘independent causal
mechanisms’ that define a structure, which can be used to systematically reason about novel
situations (e.g. for interventions or counterfactuals). As was recently noted by Scholkopf
(2019), traditional work in causality assumes given knowledge about the associated causal
variables (e.g. objects), and the problem of discovering them (i.e. segregation) has mostly
been neglected. In a similar vein, recent work on graph neural networks seeks to achieve
systematic generalization by focusing on relations between given entities (Battaglia et al.,
2018). Alternatively, Bengio (2019) argues for the importance of a low-dimensional ‘conscious
state’ (working memory) composed of largely independent units of abstraction that can
be selected via attention (perhaps reminiscient of Schmidhuber, 1992b). He relates the
unconscious elements from which the conscious state is constructed to a more symbolic
knowledge representation, and emphasizes their importance for systematic generalization.
However, here too, it remains unclear how such elements should be obtained and represented
in neural networks.

Finally, we acknowledge the promising results that recent large-scale language models have
produced in terms of generalization and their (acquired) ability for few-shot learning (Radford
et al., 2019; Brown et al., 2020). They are evidence for the possibility that human-level
generalization may be achieved by scaling existing approaches using orders of magnitude more
data and network parameters. However, we remain pessimistic as to whether similar results
can be obtained on less structured domains, such as when learning from raw perceptual data.
As we have argued throughout this work, the fundamental lack of a suitable mechanism for
dynamic information binding precludes the emergence of the modular building blocks needed
for acquiring a compositional understanding of the world.
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8. Conclusion

Humans understand the world in terms of abstract entities, like objects, whose underlying
compositionality allows us to generalize far beyond our direct experiences. At present,
neural networks are unable to generalize in the same way. In this paper, we have argued
that this limitation is largely due to the binding problem, which impairs the ability of
neural networks to effectively incorporate symbol-like object representations. To address this
issue, we have proposed a functional division of the binding problem that focuses on three
different aspects: The ability to separately represent multiple object representations in a
common format, without interference between them (representation problem); The process
of forming grounded object representations that are modular from raw unstructured inputs
(segregation problem); And finally, the capacity to dynamically relate and compose these
object representations to build structured models for inference, prediction, and behavior
(composition problem). Based on this division, we have offered a conceptual framework for
addressing the lack of symbolic reasoning capabilities in neural networks that is believed
to be the root cause for their lack of systematic generalization. Indeed, the importance of
symbolic reasoning has been emphasized before (Fodor and Pylyshyn, 1988) and served as a
starting point for several related perspectives (Marcus, 2003; Lake et al., 2017). Here we
have provided a more in-depth analysis of the challenges, requirements, and corresponding
inductive biases required for symbol manipulation to emerge naturally in neural networks.

Based on our discussion, we wish to highlight several important open problems for future
research in three different areas.

First is the process of segregation, which is of foundational importance and requires a
proper treatment of the dynamic and hierarchical nature of objects. In particular, we believe
that the ability to segregate must therefore largely be learned in an unsupervised fashion,
which is a major open problem that is often overlooked in the current literature. For a
new situation, the most useful decomposition in terms of objects (and the associated level
of abstraction) depends not only on the task, but also on the abstractions, relations, and
general problem-solving capabilities available to the entire system. Therefore, another open
problem is to integrate segregation, representation, and composition into a single system in a
way that resolves these dependencies (through top-down feedback). Existing attempts fail to
accommodate these interactions, e.g. because they rely on pre-trained vision modules (Mao
and Gan, 2019) or overly specialized domain-specific components (de Avila Belbute-Peres
et al., 2018). Addressing these open problems may pave the way for an integrated system
that can learn to dynamically construct structured models for prediction, inference, and
behavior in a way that generalizes similarly to humans.

Secondly, to facilitate progress on the binding problem, we require corresponding bench-
marks and metrics that allow for meaningful comparisons. Current benchmarks fall short in
the sense that they do not bridge the gap between simplistic ‘toy’ datasets and the complexity
of real-world sensory information, or lack the appropriate meta-data required to support eval-
uation (such as object-level annotations). The latter is particularly important since standard
approaches to measuring properties such as systematic generalization or disentanglement
are supervised and require information about ‘ground truth’ objects or factors. However,
this reliance on ground truth data seems problematic in real-world settings more generally,
i.e. due to the task- and context-dependent nature of objects and the amount of manual
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labor involved. This should motivate research on alternative ‘unsupervised metrics’ for these
purposes, e.g. analogous to the FID score for the perceptual quality of images (Heusel et al.,
2017). The design of benchmarks and metrics is hindered by a lack of agreed-upon definitions
for behaviors like systematic generalization, combinatorial generalization, or compositionality.
Going forward, it is therefore critical to develop a shared vocabulary of well-defined and
measurable generalization patterns that can be explicitly characterized in terms of the type
and amount of available information. Recent attempts at quantifying systematic generaliza-
tion that distinguish between interpolation and extrapolation (Santoro et al., 2018b) or the
categorization developed by Hupkes et al. (2020) provide a promising step in this direction.

Finally, we wish to highlight several other interesting research directions that are also
important for human-level generalization but go beyond the scope of this survey. Concerning
the binding problem, we focused primarily on encoding information about objects in working
memory, although similar problems arise in the context of long-term memory. We speculate
that several of the same insights can be applied here, e.g. memory recall as a type of segrega-
tion, or the need for a separation between relations and objects. However, for other challenges,
such as the problem of representing information in a scalable way (despite a constantly
evolving representational format), the connection is less clear. Another interesting direction
is concerned with the arising and grounding of more abstract concepts like “mammals”,
“capitalism” or “a transaction”. Although abstract objects may be more difficult to obtain,
since they are further removed from sensory reality, it is precisely because of this gap that
they are capable of participating in a wider range of situations. Indeed, this research direction
is highly relevant to the broader problem of grounding language, which is concerned with
abstract concepts in their most general form. In this context, it is interesting to note that
most (if not all) abstract concepts seem to be grounded in basic physical metaphors (Lakoff
and Johnson, 2008). Finally, a comprehensive treatment of causal reasoning likely goes
beyond composition and should include an explicit treatment of interventions and the ability
to reason about hypothetical or unobserved scenarios (counterfactuals). This is especially
relevant due to the connection between systematic generalization and the increased robustness
when considering so-called independent causal mechanisms (Peters et al., 2017). If a suitable
causal relational frame can be learned, then this may allow the problem of planning to be
phrased as connecting a current state and an imagined goal state, by means of combinatorial
entailment.

We hope that this survey may serve as an inspiration and a guide for future work towards
achieving human-level generalization in neural networks and that it may spark fruitful
discussions that bridge the gap between related fields.
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