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a b s t r a c t 

Continual learning (CL) is a particular machine learning paradigm where the data distribution and learning ob- 
jective change through time, or where all the training data and objective criteria are never available at once. The 
evolution of the learning process is modeled by a sequence of learning experiences where the goal is to be able 
to learn new skills all along the sequence without forgetting what has been previously learned. CL can be seen as 
an online learning where knowledge fusion needs to take place in order to learn from streams of data presented 
sequentially in time. Continual learning also aims at the same time at optimizing the memory, the computation 
power and the speed during the learning process. 

An important challenge for machine learning is not necessarily finding solutions that work in the real world 
but rather finding stable algorithms that can learn in real world. Hence, the ideal approach would be tackling 
the real world in a embodied platform: an autonomous agent. Continual learning would then be effective in an 
autonomous agent or robot, which would learn autonomously through time about the external world, and incre- 
mentally develop a set of complex skills and knowledge. 

Robotic agents have to learn to adapt and interact with their environment using a continuous stream of ob- 
servations. Some recent approaches aim at tackling continual learning for robotics, but most recent papers on 
continual learning only experiment approaches in simulation or with static datasets. Unfortunately, the evalua- 
tion of those algorithms does not provide insights on whether their solutions may help continual learning in the 
context of robotics. This paper aims at reviewing the existing state of the art of continual learning, summarizing 
existing benchmarks and metrics, and proposing a framework for presenting and evaluating both robotics and non 
robotics approaches in a way that makes transfer between both fields easier. We put light on continual learning 
in the context of robotics to create connections between fields and normalize approaches. 
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. Introduction 

Machine learning (ML) approaches generally learn from a stream of
ata randomly sampled from a stationary data distribution. This is often
 sine qua non condition to learn efficiently. However, in the real world,
his setting is rather uncommon. Continual Learning (CL) [128] gath-
rs together work and approaches that tackle the problem of learning
hen the data distribution changes over time, and where knowledge

usion over never-ending streams of data needs to be accounted for.
onsequently, CL is the paradigm to deal with catastrophic forgetting
47,102] . 
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For convenience, we can empirically split the data stream into sev-
ral subsections temporally bounded we call tasks. We can then observe
hat we learn or forget when learning a new task. Even if there is no
andatory constraint on a task, a task often refers to a particular pe-

iod of time where the data distribution may (but not necessarily) be
tationary, and the objective function constant. Tasks can be disjoint or
elated to each other, in terms of learning objectives, and depending on
he setting. 

One solution to Continual Learning would be saving all data, shuffle
t, and come back to a traditional machine learning setting. Unfortu-
ately, in this case, this is not always possible nor optimal. Here are
everal examples of settings where continual learning is necessary: 
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practical option. 
• You have a trained model, you want to update it with new data but
the original training data was discarded or you do not have the right
to access it any longer. 

• You want to train a model on a sequence of tasks but you can not
store all your data or you do not have the computational power to
retrain the model from all data (e.g., in an embedded platform). 

• You want an agent to learn multiple policies but you do not know
when the learning objective changes nor how. 

• You want to learn from a continuous stream of data that may change
through time but you do not know how and when. 

In order to handle such settings, representations should be learned in
n online manner [87] . As data gets discarded and has a limited lifetime,
he ability to forget what is not important and retain what matters for
he future are the main issues that continual learning targets and focuses
n. 

From a robotics point of view, CL is the machine learning answer to
evelopmental robotics [93] . Developmental robotics is the interdisci-
linary approach to the autonomous design of behavioural and cognitive
apabilities in artificial agents that directly draws inspiration from de-
elopmental principles and mechanisms observed in children’s natural
ognitive systems [18,93] 2 . 

In this context, CL must consist of a process that learns cumulative
kills and that can progressively improve the complexity and the diver-
ity of tasks handled. 

Autonomous agents in such settings learn in an open-ended
36] manner, but also in a continual way. Crucial components of such
evelopmental approach consist of learning the ability to autonomously
enerate goals and explore the environment, exploiting intrinsic moti-
ation [113] and computational models of curiosity [112] . 

We propose a framework to link continual learning to robotics. This
ramework also sets the opportunities for continual learning to have a
ramed mathematical formulation to present approaches in a clear and
ystematic way. 

First we present the context and the history of continual learning.
econdly, we aim at disentangling vocabulary around continual learn-
ng to have a clear basis. Thirdly, we introduce our framework as a
tandard way of presenting CL approaches to help transfer between dif-
erent fields of continual learning, especially to robotics. Fourthly, we
resent a set of metrics that will help to better understand the quality
nd shortcomings of every family of approaches. Finally, we present the
pecifics and opportunities of continual learning in robotics that make
L so crucial. 

We kept the sections definitions, framework, strategies and evalua-
ion general enough to both robotics and non-robotics domains. Never-
heless, the last section, Continual Learning for Robotics ( Section 6 ) ben-
fits from the content of previous sections to present the specificities of
ontinual Learning in the field of robotics. 

. Definition of continual learning 

Given a potentially unlimited stream of data, a Continual Learning
lgorithm should learn from a sequence of partial experiences where all
ata is not available at once. A non-continual learning setting would
hen be when the algorithm can have access to all data at once and can
rocess it as desired. Continual learning algorithms may have to deal
ith imbalanced or scarce data problems [154] , catastrophic forgetting

47] , or data distribution shifts [50] . 
As a more constrained version of on-line learning, CL needs to im-

licitly or explicitly account for knowledge fusion at different levels over
ime. Firstly, CL is required to support data-level fusion and, at the same
ime, be able to preserve learned knowledge from data that may disap-
ear (e.g. due to inability to re-process certain data, due to the right
2 Synonyms of Developmental Robotics include cognitive developmental 

obotics, autonomous mental development as well as epigenetic robotics . T

53 
o be forgotten of EU GDPR 

3 , or simply legacy reasons like for medical
ecords). CL requires as well fusion at model level, since different tasks
o be learned may require different model architecture components that
n the end must act as one. 

Lastly, fusion needs also to occur at the knowledge or conceptual
evel, since memorization of raw data has to be avoided, but without
ncurring catastrophic forgetting. We consider continual learning a syn-
nym of Incremental Learning [50,125] , Lifelong Learning [24,159] and
ever Ending Learning [19,107] . For the sake of simplicity, in the remain-

ng of the article we refer to all Continuous, Incremental and Lifelong
earning synonyms as Continual Learning (CL). 

In this section we first present the history and motivation of contin-
al learning, then we present several definitions of terms related to CL
nd, finally, we present challenges addressed by CL in machine learning.

.1. History and motivation 

The concept of learning continually from experience has always been
resent in artificial intelligence and robotics since their birth [162,169] .
owever, it is only at the end of the 20 th century that it has began to be
xplored more systematically. Within the machine learning community,
he lifelong learning paradigm has been popularized around 1995 by
128,159] , while the robotics field only later catches up with a renewed
nterest in developmental robotics [93] . 

Between the end of the 90s and the first decade of the 21 st cen-
ury, sporadic attention has been devoted to the topic within the su-
ervised, unsupervised and reinforcement learning domains. However,
espite the first pioneering attempts and early speculations, research in
his area has never been carried out extensively until the recent years
24,114] . We argue that this is because there were more complex and
undamental problems to solve and a number of additional constraints:

• Lack of systemic approaches : Machine learning research for the past
20 years has focused on statistical and algorithmic approaches on
simple tasks (e.g., tasks where the distribution of data is assumed
static). CL typically needs a systems approach that combines multiple
components and learning algorithms in complex and dynamic tasks.
The complexity of tasks and their multiple uses in continual learn-
ing greatly complicates training and evaluation procedures. Disen-
tangling “static ” learning performance from continual learning side
effects is important for the very incremental nature of the research
and to facilitate comparison between approaches in this area. 

• Limited amount of data and computational power : Digital data is a lux-
ury of the 21 st century. Before the big data revolution, collecting and
processing data was a daunting task. Moreover, the limited amount
of computational power available at the time did not allow complex
and expensive algorithmic solutions to run effectively, especially in a
continual learning setting which undoubtedly makes learning more
complex by having to deal with multiple tasks at the same time, as
well as having to incorporate the concept of time into the learning
process. 

• Manually engineered features and ad-hoc solutions : Before early 2000s
and first works on representation learning, creating a machine learn-
ing system meant to handcraft features and finding ad-hoc solutions,
which may differ significantly depending on the task or domain.
Having a general algorithm with a more systematic approach seemed
for a long time a very distant goal. Manually engineered features is
also a clear limitation to achieve autonomy, as new tasks need to
have the same features or re-engineered ones. 

• Focus on supervised learning : creating labeled data is probably the
slowest and the most expensive step in most ML systems. This is
why learning continuously has been for a long time not a viable and
3 Art. 17 GDPR – Right to erasure ( right to be forgotten ) https://gdpr-info.eu / 
1/ guilsinglright-art-17-gdpr. 

https://gdpr-info.eu
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The relaxation of these constraints, thanks to recent advancements
nd results in machine learning research, as well as the rapid techno-
ogical progress witnessed in the last 20 years, have open the door for
tarting tackling more complex problems such as learning continually. 

We argue that the robotics community, which has always been in-
rigued by endowing embodied machines with lifelong and open-ended
earning [36] of new skills and new knowledge, would highly benefit
y the recent advances of ML in this area. Robotics applications in un-
onstrained environments, indeed, have always posed questions out of
each for previous machine learning techniques. On the other hand, CL
eveloped in the context of robotics is involved in understanding the
ole and the impact of the concept of “embodiment ” in intelligent ma-
hines that learn and think like humans. 

Learning, embodiment, and reasoning are presented as the three
reat families of challenges for robotics in [158] . We postulate that CL
ackles the learning problem, taking into account the importance and
onstraints of embodiment. At best, CL would also benefit from reason-
ng in order to maximize the learning process. Thus, continual learning
ies in the intersection of crucial robotics challenges. 

Despite lifelong learning approaches existing in different ML disci-
lines (such as evolutionary algorithms for example [5–7,13] ), in the
est of the article we focus on recent continual learning developments
n the context of gradient-based neural network and deep learning ap-
roaches. For a more detailed description of many other classic ap-
roaches to continual learning with shallow architectures we refer the
eader to [24] . 

.2. Terminology clarification 

In this section we aim at clarifying the distinction and similarities of
ontinual learning with related topics and terms used in the literature. 

Online learning 

Online learning is a special case of CL [66] where updates are done
n per single data point basis and therefore, the batch size is one. Online
earning algorithms are suited to scenarios where information should be
rocessed instantly, either to adapt the model to learn as fast as possible
r because data can not be saved. 

Few-shot Learning 

Few shot learning [42,76] is the ability to learn to recognize new
oncepts based on only few samples of them. It may be used for continual
earning problems when the number of data points is very low. The
xtreme case of zero-shot learning consists of the ability to detect new
lasses while being trained with a disjoint set of classes [166] . 

Curriculum Learning 

Curriculum learning [9] is a training process that proposes a se-
uence of more and more difficult tasks to a learning algorithm in order
o make it able to learn, at last, a generally harder task. The sequence of
asks is designed in order to be able to learn the last one. Both CL and
urriculum learning learn on a sequence of tasks (or partial experience).
owever, in curriculum learning, tasks are chosen in a way that makes
ossible to learn tasks of different complexity, by taking into account the
ifficulty of them, while in CL, tasks are not voluntarily chosen nor or-
ered. Furthermore, while the interest of curriculum learning ultimately
ies into solving the last task, the continual learning objective is to be
ble to solve all tasks. 

Meta-learning 

Meta-learning [12] is a learning process that uses meta-data about
ast experiences, such as hyper-parameters, in order to improve its ca-
acity to learn on new experiences. It also learns several different tasks;
owever, its goal is not learning without forgetting but to progressively
mprove the learning efficiency while learning on more and more tasks.
t is also called ”learning to learn ”, and it can or not be used in a con-
inual learning setting. 

Transfer learning 

Transfer learning [44,122,177] is the ability to use what has been
earned from a previous task on a new task. The difference with contin-
54 
al learning is that transfer learning is not concerned about keeping the
bility to solve previous tasks. In computer vision, transferring what has
een learned from a past environment to new environments would be
ften referred to as domain adaptation [31,118] . 

Active Learning 

Active learning is a special case of semi-supervised machine learning
n which a learning algorithm is able to interactively query the user (or
ome other information source) to obtain the desired output labels for
ew data points [147,148] . Active learning may be used in CL to query
ew examples and have control of the data the algorithm has access to.

.3. Challenges addressed by CL 

In this section we describe the specific problems addressed by con-
inual learning; the kind of problems that arise when data cannot be
ssumed i.i.d., and when the hypothesis that the data distribution is
tatic is not valid. 

.3.1. Catastrophic forgetting 

Catastrophic forgetting [47,102] refers to the phenomenon of a
eural network experiencing performance degradation at previously
earned concepts when trained sequentially on learning new concepts
102] . Since by definition the continual learning setting deals with se-
uences of classes or tasks, the catastrophic forgetting is an important
hallenge to be tackled. Catastrophic forgetting might also be referred to
s catastrophic interference . The notion of interference is pertinent since
he acquisition of new skills interferes with past skills by modifying im-
ortant parameters. 

.3.2. Handling memories 

One of the main components that distinguishes two CL approaches
s the way they handle memories. In order to deal with catastrophic
orgetting, each strategy should find a way to remember what gradi-
nt descent will make forget. Continual learning needs a mechanism to
tore memories of past tasks, which can take very different forms. It is
mportant to note that memories can be saved in different manners: as
aw data, as representations, as model weights, regularization matrices,
tc. An efficient memory management strategy should only save impor-
ant information, as well as be able to transfer knowledge and skills
o future tasks. In practice, it is almost impossible to know what will
e important and what could be transferable in the future; a trade off
hould then be found between the precision of the information saved
nd the acceptable forgetting. This trade-off problem is known as the
tability/plasticity dilemma [103] . 

An important challenge inherent to handling memories is to auto-
atically assess them. Learning new tasks may lead to degradation of

he memories. Furthermore, the memory process needs mechanisms to
valuate how the memories are degraded, i.e., how it forgets. As no more
ata and labels from past tasks may be available, this check-up might
e very challenging. 

.3.3. Detecting distributional shifts 

When the distribution is not stationary, a shift into the data stream
s observed. When there is no external information concerning this shift,
he CL model has to detect it, and account for fixing it by itself. An un-
etected shift in the data distribution will irrevocably lead to forgetting.
hanges in the data distribution over time are commonly referred to as
oncept drift . This idea is related to online change detection algorithms
109,140] or Bayesian surprise [156] in ML. Two kinds of concept drift
re defined [50] : Virtual and real concept drift. Virtual concept drift
oncerns the input distribution only, and can easily occur, e.g., due to
mbalanced classes over time. Real concept drift, on the contrary, is
aused by novelty on data or new classes, and can be detected by its
ffect, on e.g., classification accuracy. However shift may also happen
hen the task change. In RL for example an agent may have to solve
 new task. Then the shift is not exactly in the data distribution but in
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he supervision signal. Regardless of where exactly the shift happened
t has to be detected to avoid catastrophic interference with non related
kills or knowledge. 

.4. Learning paradigms orthogonal to continual learning 

In this section we describe the relationship of continual learning with
espect to the main three, generally acknowledged machine learning
aradigms: supervised, unsupervised and reinforcement learning. 

.4.1. Supervised continual learning 

Supervised learning is the machine learning problem of learning
rom input-output example pairs [135] . For each input-output pair ( X t ,

 t ), the model should learn to predict Y t from X t . X t is the input data,
 t is the supervision signal. Supervised continual learning is a particu-

ar case where the data is not available all at once. The function should
hen be learned from a sequence of data points in order to be able to
ap data to labels at the end of the sequence for the whole dataset. Su-
ervised Continual Learning approaches have been mostly focused on
lassification [73,92,97] . 

While the study of continual learning in this context may help disen-
angling the complexity introduced by algorithms that learn continually,
n the context of robotics, the lack of supervision does not allow, most
f the time, to apply directly supervised methods. 

.4.2. Unsupervised continual learning 

Unsupervised learning refers to machine learning algorithms that do
ot have labels or rewards to learn from. In the context of robotics, un-
upervised continual learning may play an important role in building in-
reasingly robust multi-modal representations over time to be later fine-
uned with an external and very sparse feedback signal from the envi-
onment. In order to learn robust and adaptive representations with un-
upervised learning, the main objective is to find suitable surrogate and
eaningful learning signals, as robotics priors [64,84] , self-supervised
odels or curiosity driven techniques. 

A particular unsupervised task learned in a continual learning set-
ing is the generation of images. Image generation is achieved by train-
ng generative models to reproduce images from a dataset. In a CL
etting, the distribution changes over time and the generative model
hould be able to produce at the end images from the whole distri-
ution. This problem has been studied for various generative models
cf. Section 4 ) as adversarial models [81,171] , variational auto-encoders
1,41,81,111,124] and standard auto-encoders [161,178] . 

There is also a different relation between unsupervised learning and
L, since unsupervised models can be used to learn representations

rom vast amounts of data sources and can then generate such data (cf
ection 4.4 ). This capacity can then be used to perform CL for classifi-
ation [83,150,161,172] or reinforcement learning tasks [20] . Another
se case is using data generation as a data augmentation strategy. 

.4.3. Continual reinforcement learning 

Reinforcement Learning is a machine learning paradigm where the
oal is to train an agent to perform actions in a particular environment
n order to maximize the expected cumulative reward. In traditional RL,
he world is modeled as a stationary MDP: i.e., fixed dynamics and states
hat can recur infinitely often [129] 4 . Since in general, complex RL envi-
onments have no access to all data gathered at once, RL could often be
ramed as a CL situation. Moreover, RL borrows several tools used in CL
odels, such as approximating data to an i.i.d. distribution, via either i)

etting multiple agents or actors to learn in parallel [99] , or ii) using a
eplay buffer (or experience replay [108] ), that is equivalent to a partic-
lar category of CL (rehearsal, see Section 4.3 ). An analogy of a popular
table method in RL is PPO algorithm [143] , which constrains learning
4 This MDP assumption was recognized and first removed in [129] . 

 

i  

55 
y using the Fisher information matrix to improve learning continually,
n the same way as some CL strategies (e.g., EWC, see Section 4.2.1 ).
ost of Continual Learning approaches in RL have been applied in sim-

lation settings such as Atari games [73] . However, many approaches
6,13,68,160] also tackle use cases on real robots. 

. A Framework For continual learning 

Despite the rapidly growing interest in continual learning and mainly
mpirical developments of the recent years [114] , very little research
nd effort has been devoted to a common formalization of algorithms
hat learn continually in dynamic environments. However, the availabil-
ty of a common ground for thoroughly evaluating and understanding
ontinual learning algorithms is essential to reduce ambiguities, enhanc-
ng fair comparisons and ultimately better advancing research in this
irection. 

Being able to better compare and evaluate continual learning strate-
ies, while still being general enough to overlook implementation-
ependent details over different learning paradigms, becomes essential.
his is specially true when targeting deployment of CL paradigms in
eal-word applications, such as robotics. Nowadays, despite the exis-
ence of a basic set of shared practices, many are the fundamental ques-
ions often overlooked in recent continual learning research. For exam-
le, questions about the data availability during training and evaluation,
he amount of supervision with respect to the tasks separation and com-
osition, as well as common but biased assumptions on the nature of
he data among others. A list of questions of interest we would like to
ddress and report are the following: 

a) Data Availability 
• Q 1 : Does some data need to be stored? if yes, how and what for?

(e.g. regularization, re-training, validation)? 
• Q 2 : Is the algorithm tuned based on the final performance? I.e. is it

possible to go back in time to improve performance? 
• Q 3 : Are data distributions assumed i.i.d. at any point? 
• Q 4 : Is each task assumed to be encountered only once? 

b) Prior Knowledge 
• Q 5 : Is the continual learning algorithm agnostic with respect to the

structure of the training data stream? (e.g. number of classes, num-

bers of tasks, number of learning objectives...) 
• Q 6 : Does the approach need a pretrained model for the CL setting? If

so, what is the new knowledge that needs to be acquired while learning

continually? 

c) Memory and Computational Constraints 
• Q 7 : How much available memory does the algorithm require while

learning? Does the memory capacity requirement changes as more

tasks are learned? 
• Q 8 : Is the continual learning algorithm constrained in terms of com-

putational overhead for each learning experience? Does the compu-

tational overhead increase over the task sequence? 
• Q 9 : Is the continual learning algorithm agnostic with respect to the

data type? (e.g. images, video, text,...) 
• Q 10 : Is the continual learning algorithm able to handle situations

where there is not enough time to learn? 

d) Amount/Type of Supervision 
• Q 11 : In the presence of multiple tasks, is the task label available to

the algorithm during the training phase? And during evaluation? 
• Q 12 : Are all the data labeled? or only the first training set? Can the

user provide sparse label/feedback (e.g. active learning) to correct

the system errors? 

e) Performance Expectation 
• Q 13 : What is expected from the algorithm to remember at the end of

the full stream? Is it acceptable to forget somehow, when task, context

or supervision change? 

To summarize these questions, in any new CL algorithm proposition,
t is fundamental to clearly describe the data stream, its use, the algo-
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Table 1 

Example: Sequential task labels (corresponding to different distribution 
𝐷 𝑖 ∈  ) to reflect differences among CL categorization w.r.t. number and 
unicity of tasks for SIT, MT and MIT. Notice that a MIT setting requires 
breaking the constraint definition of SIT but also breaking the constraint 
definition of MT, i.e., it corresponds to the case where not all the tasks 
are considered having the same ID , and not all the task are considered 
distinct. 

Task ID/Session CL settings 

Task ID SIT MT MIT 

t 1 0 1 0 

t 2 0 2 1 

t 3 0 3 0 

... ... ... ... 

t i 0 i ... 
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ithm functioning, its assumed prior knowledge, and its requirements in
erms of supervision, memory and computation. 

We will now propose a comprehensive and detailed framework to
elp distill and disentangle different approaches in different continual
earning settings and help answer these questions. 

Early theoretical attempts to formalize the CL paradigm are found in
129] as a combination between reinforcement learning and inductive
ransfer. More general framework approaches include the one on non
.i.d. tasks of [119] . As in [119] , we assume CL is tackling a probably
pproximately correct (PAC) learnable problem in the approximation of
 target hypothesis h ∗ as well as learning from a sequence of non i.i.d.
raining sets. Our framework could also be seen as a generalization of
he one proposed in [92] , where learning happens continuously through
 continuum of data and a “task supervised signal ” t may be provided
long with each training example. 

In continual learning data can be conveniently seen as drawn from a
equence of distributions D i , and thus the need to redefine a CL frame-
ork taking into account this important property is defined as follows. 

efinition 1Continual Distributions and Training Sets. In Continual
earning,  is a potentially infinite sequence of unknown distributions
 = { 𝐷 1 , … , 𝐷 𝑁 } over XesY , with X and Y input and output random
ariables, respectively. At time i a training set Tr i containing one or
ore observations is provided by D i to the algorithm. 

As the framework hereby proposed is supposed to be general enough
o cover the orthogonal and classical unsupervised, supervised and re-
nforcement learning approaches, Tr i , as better detailed in Definition 3 ,
s a collection of training observations/data samples that act as signal
f the joint distribution to be learned. 

efinition 2. Task 

A task is a learning experience characterized by a unique task la-
el t and its target function 𝑔 ∗ 

𝑡 
( 𝑥 ) ≡ ℎ ∗ ( 𝑥, 𝑡 = ̂𝑡 ) , i.e., the objective of its

earning. 

It is important to note that the tasks are just an abstract represen-
ation of a learning experience represented by a task label. This label
elps to split the full learning experience into smaller learning pieces.
owever, there is not necessarily a bijective correspondence between
ata distributions and tasks. 

efinition 3Continual Learning Algorithm. Given h ∗ as the general
arget function (i.e. our ideal prediction model), and a task label t , a
ontinual learning algorithm A 

CL is an algorithm with the following sig-
ature: 

𝐷 𝑖 ∈  , 𝐴 

𝐶𝐿 
𝑖 

∶ < ℎ 𝑖 −1 , 𝑇 𝑟 𝑖 , 𝑀 𝑖 −1 , 𝑡 𝑖 > →< ℎ 𝑖 , 𝑀 𝑖 > (1)

Where: 

• h i is the current hypothesis at timestep i , or, practically speaking, the
parametric model learned continually. 

• M i is an external memory where we can store previous train-
ing examples or partial computation not directly related to the
parametrization of the model. 

• t i is a task label, that can be used to disentangle tasks and customize
the hypothesis parameters. For simplicity, we can assume N as the
number of tasks, one for each Tr i . 

• Tr i is the training set of examples. Each Tr i is composed of a num-
ber of examples 𝑒 𝑖 

𝑗 
with 𝑗 ∈ [1 , … , 𝑚 ] . Each example 𝑒 𝑖 

𝑗 
= < 𝑥 𝑖 

𝑗 
, 𝑦 𝑖 
𝑗 
>,

where y i is the feedback signal and can be the optimal hypothesis
h ∗ ( x, t ) (i.e., exact label 𝑦 𝑖 

𝑗 
in supervised learning), or any real ten-

sor (from which we can estimate h ∗ ( x, t ), such as a reward 𝑟 𝑖 
𝑗 

in RL).

It is worth pointing out that each D i , can be considered as a stationary
istribution. However, this framework setting allows to accommodate
ontinual learning approaches where examples can also be assumed to
e drawn non i.i.d. from each D over XesY , as in [50,56] . 
i 

56 
efinition 4Continual Learning scenarios. A CL scenario is a specific
L setting in which the sequence of N task labels respects a certain “task
tructure ” over time. Based on the proposed framework, we can define
hree different common scenarios: 

• Single-Incremental-Task (SIT) : 𝑡 1 = 𝑡 2 = ⋯ = 𝑡 𝑁 . 
• Multi-Task (MT) : ∀𝑖, 𝑗 ∈ [1 , ., 𝑛 ] 2 , 𝑖 ≠ 𝑗 ⇒ 𝑡 𝑖 ≠ 𝑡 𝑗 . 
• Multi-Incremental-Task (MIT) : ∃ 𝑖, 𝑗, 𝑘 ∶ 𝑡 𝑖 = 𝑡 𝑗 and t j ≠ t k . 

Table 1 illustrates an example to clarify the definition of SIT, MT and
IT. 

An example of Single-Incremental-Task (SIT) scenario is an ordinary
lassification task between cats and dogs, where the distribution changes
hrough time. First, there may only be input images of white dogs and
hite cats, and later only black dogs and black cats. Therefore, while

earning to distinguish black cats from black dogs the algorithm should
ot forget to differentiate white cats from white dogs. The task is always
he same, but the concept drift might lead to forgetting. 

However, in a classification setting, a Multi-Task (MT) scenario
ould first consist of learning cats versus dogs, and later cars ver-

us bikes, without forgetting. The task label changes when the classes
hange, and the algorithm can use this information to maximize its con-
inual learning performance. The Multi-Incremental-Task (MIT) is the
cenario where the same task can happen several times in the sequence
f tasks, but such task is not the only existing one. 

In any learning problem (be it classification, RL or unsupervised
earning), the ability to adapt to new concepts to be learned (from the
AC ML framework [163] ), as well as new instances of each concept,
hould be accounted. This is the objective of the next definition where
e formally set three different settings an algorithm is required to man-
ge, as they can have very high impact on the algorithm performance. 

efinition 5Task label and concept drift scenarios. The task label
an specify different assumptions made in a continual learning scenario.
e can define three main categories of task label assumptions regarding

oncept drift: 

• No task label : Changes in the distribution are not signaled by any
task label. The task is always the same (equivalent to SIT scenario).

• Sparse task label : Changes in the distribution are sparsely signaled
by the task label. There are several tasks but changes in distribution
may as well happen inside a task. 

• Task label oracle : Every change in the data distribution is signaled
by the task label, which is given. 

We illustrate the different scenarios in Fig. 1 . 

efinition 6 Availability of task label. When a task label is provided,
t is worth distinguishing among two different cases: 

• Learning labels : Task labels are provided for learning only. At test
time, inference should be done without knowing from which task a
data point is coming from. 
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Fig. 1. Task label and concept drift: illustration of the different scenarios.. 
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• Permanent labels : The task labels are provided for learning, and
it is assumed they will also be provided at test time for inference. 

efinition 7Content Update Type. The nature of the data samples or
bservations contained in each Tr i can be conveniently framed in three
ifferent categories: 

• New Instances (NI) : Data samples or observations contained in
the training set at time-step i relate to the same dependent variable
Y used in the past. 

• New Concepts (NC) : Data samples or observations contained in
the training set at time-step i relate to a new dependent variable Y
to be learned from the model. 

• New Instances and New Concepts (NIC) : Data samples or ob-
servations contained in the training set at time-step i relate to both,
already encountered dependent variables, and new ones ( Y ). 

In order to exemplify the concept of Content Update Type defined in
efinition 7 , let us recover the aforementioned example of classification.

f an algorithm learns the cat vs dogs classification problem on a dataset
nd then new images of cat vs dogs are provided to the algorithm, we
re then in a New Instances case (NI), we have new data but no new
oncepts. If the new instances were of different classes (e.g. cars vs bikes)
e then would face the New Concepts case (NC). The new instances and
ew concepts case would then have been a mix of both new images of
nown and new classes. 

If a CL algorithm uses a network pretrained on a dataset, the features
f such dataset will need to be accounted for as one more task or the
ame, depending on the distribution of new instances and new classes
ccording to Definitions 4 and 7 . In other words, using a pretrained
odel is similar to assume there is a task already learned by the model,

nd the new learning experiences of the algorithm are just a continuum
f learning curricula. If there is any intersection between the pretraining
nd the new tasks, it should be reported in the setting description. The
retraining effect can then be estimated with the metrics proposed in
ection 5.2 . 

Constraints 

onstraint 1. For every step in time, the number of current examples
ontained in the memory is lower than the total number of previously

een examples 5 : ∀𝑖 ∈ [1 , … , 𝑛 ] , |𝑀 𝑖 |≪ 

||||𝑖 −1 ⋃
𝑖 =1 

𝑇 𝑟 𝑖 
||||

onstraint 2. Memory and computation for each iteration step i are
ounded. Given two functions ops () and mem () that compute the number
f operations and memory occupation required by 𝐴 

𝐶𝐿 
𝑖 
, two reasonably

mall values max_ops and max_mem should exist, such that, for each i ,
𝑝𝑠 ( 𝐴 

𝐶𝐿 ) < max _ 𝑜𝑝𝑠 and 𝑚𝑒𝑚 ( ℎ 𝑖 −1 , 𝑀 𝑖 −1 ) < max _ 𝑚𝑒𝑚 . 

𝑖 

5 I.e., if we could fit all previous examples in memory M , it would become 
 problem of scarce interest for the CL community, given that re-training the 
ntire model h i from scratch would be always possible [66] . 

o  

w  

w  

c  
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𝑚𝑎𝑥 _ 𝑜𝑝𝑠 and 𝑚𝑎𝑥 _ 𝑚𝑒𝑚 are the max throughput, in number of opera-
ions, and the max memory capacity of the system running 𝐴 

𝐶𝐿 
𝑖 

. Having
 memory and computational bounds for each iteration i is an impor-
ant constraint for a continual learning algorithm. The reason is that
he number of training sets Tr i can potentially be unlimited, and thus,
omputation and memory should not be proportional to the number of
ypothesis updates h i over time. A finite upper bound should exist and
e considered, especially with n → ∞. 

Relaxation and desiderata 

Given the difficult setting and the additional constraints imposed
y Continual Learning with respect to the classic “static ” setting, many
esearchers in the recent literature have proposed new CL strategies in
lightly relaxed [73,92,95,137] yet reasonable settings: 

elaxation 1. Memory relaxation : Removes the fixed memory
ound constraint over ops () and mem (). 

elaxation 2. Computation relaxation : Removes the fixed compu-
ational bound constraint 𝑜𝑝𝑠 ( ℎ 𝑖 ) < max _ 𝑜𝑝𝑠 . 

In both cases we assume that for practical applications, a finite (and
easonable) number of tasks N are encountered, hence, for many settings
ith a generous memory and computational bounds, many continual

earning strategies that, in terms of complexity and memory usage, grow
omehow proportional to the number of training sets Tr i may still be a
iable option, especially if they can guarantee better performance. 

Having defined a formal framework for CL, we can therefore high-
ight a number of desiderata: 

esideratum 1. Storage-Free Continual Learning : Avoid the use
f external memory M to store raw data. 

esideratum 2. Online Continual Learning : Limit the size of each
raining set, moving towards online learning so that |𝑇 𝑟 𝑖 | = 1 . 

Being able to learn without storing any raw data would mean a large
tep towards continual learning. In fact, getting rid of storing raw data
eans that the learning algorithm is able to extract information from

he current task that may be not only useful and accurate for the actual
ask, but also transferable for the future. 

In our biological counterparts, namely the brain, a system-level con-
olidation process is often thought to take place, where memories are en-
oded, stored and than retrieved for rehearsal purposes [32] . However,
he idea of storing high-dimensional perceptual data appears impracti-
al given the incredible amount of information flowing into our brain
very day from our multi-modal senses. Being able to process data online
s well, is an important desideratum especially for reducing adaptation
ime and operational memory usage in an embedded or robotics setting.

esideratum 3. Task indicator free Continual Learning : Learning
ontinually without help of an external signal t indicating the current
ask, in particular at test time, is strongly desirable. 

. Continual learning strategies 

In this section we present a summary of the most popular continual
earning strategies in the literature (see Fig. 2 ). For a more in depth
verview, we refer the reader to the recent overview in [114] that
dditionally exposes the bio-inspired aspects of existing continual ap-
roaches. 

.1. Dynamic architectures approaches 

The architecture of learning models has a strong influence on how
hey learn. One approach to CL is to modify dynamically the architecture
f a model to make it learn new concepts or skills without interfering
ith old ones. We present two types of dynamic architectures. Firstly,
hen the changes in the architecture are explicit; and secondly, when

hanges are implicit architectural changes by freezing weights. We also
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Fig. 2. Venn diagram of some of the most popular CL strategies w.r.t the four 
approaches illustrated in Section 4 : CWR [91] , PNN [137] , EWC [73] , SI [176] , 
LWF [87] , ICARL [125] , GEM [92] , FearNet [70] , GDM [115] , ExStream [55] , 
Pure Rehearsal, GR [150] , MeRGAN [171] and AR1 [97] . Rehearsal and Gener- 
ative Replay upper categories can be seen as a subset of replay strategies. Better 
viewed in color. 
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resent an important architectural approach to CL: dual memory mod-
ls. 

.1.1. Explicit architecture modification 

Explicit dynamics architecture gather all methods that add, clone or
ave parts of parameters of the models to avoid catastrophic forgetting.

Progressive neural networks [137] is one of the first approaches
ithin this paradigm for deep neural networks. For each new task to
e learned, a new model is created connected to all past ones. The goal
f this new model is to learn the new task by using what was already
earned by previous models, and so develop the new skills needed. At
est time, the proposed method needs to input data to all the neural
etworks previously created, and needs to know the task index to pick
he right output. Because the weights are used to connect neural net-
orks together, the growth of parameters is quadratic w.r.t. the num-
er of tasks. This growth is generally to be prevented. Instead, layers
ay be dynamically expanded in a single network without the need of

e-training or freezing previously learned parameters, improving model
apacity over time [167] . 

Another type of dynamic architecture strategy consists of dynami-
ally adding neurons for new tasks. As an example, output layers can be
dded in order not to change output parameters from previous tasks as
n LWF approach [87] . This method ensures that the output layer will
ot be modified; however, as the feature extraction layers are shared
etween tasks, some parameters risk to be modified and forgotten. In
ddition, at test time, the method needs the task label. 

It is worth mentioning that we consider as dynamic architecture , those
pproaches that adapt their architecture specifically with the aim of not
orgetting, while similar mechanisms can be used for other purposes 6 

.1.2. Implicit architecture modification 

Implicit architecture modification is the use of model adaptation for
ontinual learning without modifying its architecture. This adaptation
6 If the architecture is changed without this objective, it is not considered as 
art of the CL approach. As an example, when new classes are available, we 
ight choose to make the output size grow to handle these, without making it 

s a way to not forget. 
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s typically achieved by inactivating some learning units or by changing
he forward pass path. 

We categorize the fact of dynamically freezing weights as an implicit
ynamic architecture approach. It is implicit because the architecture of
he model does not change; however, the capacity of the model to learn
ew tasks does in an inevitable way. 

Freezing weights consist of choosing some weights at the end of a
ask that will no more change in the future. The backward pass will not
e able to tune them anymore; however, they can still be used in the for-
ard pass. This method assures that these weights will not forget, and

ries to keep enough free parameters to learn in the future [95,96,146] .
he difficulty lies in freezing enough weights to remember, but not too
uch to still be able to learn new skills. The way weight freezing is im-
lemented in PackNet [96] , Piggypack [95] or HAT [146] is by defining
 special mask for each task that is used to both protect weights when
ew tasks are learned, and to define which weights to use at inference
ime for a given task. The use of masks to freeze important weights can
e referred to as hard attention process [146] . Weight freezing can also
e used to keep the decision boundary of the output unchanged [65] . 

An alternative to a weight freezing when tasks change is to define
 dynamics path inside the model in order to use a specific path for a
pecific task and not modify already learned weights. This is the idea
xploited in PathNet [43] . 

The use of implicit architecture modifications is not incompatible
ith explicit architecture modification as it is shown in [95,146] . 

.1.3. Dual architectures 

Dual approaches characterize architectures that are split in two mod-
ls. One model is used in order to learn the actual task and should be
asily adaptable, while the second model is used as a memory of past
xperiences. This approach can be linked to interactions between the
ippocampus and neocortex to avoid catastrophic interference in mam-
als [101] . The stable network plays the role of the neocortex, and the
exible one plays the role of hippocampus [48,50,51,97] . 

The use of dual architecture is explicit in many bio-inspired ap-
roaches such as [48,51,70,115,154] . Dual architectures are extended
n [154] with the addition of an embedding model, and then, continual
earning happens in the embedding space. The dual architecture can also
e extended to more than two components, as in FearNet [70] , which
akes inspiration from the basolateral amygdala from the brain to add
 third component that is able to choose between the flexible and the
table memory for recall. 

.2. Regularization approaches 

.2.1. Penalty computing 

Regularization is a process of introducing additional information in
rder to prevent overfitting [14] . In the context of Continual Learning,
he model should not overfit a new problem because it would make it
orget it’s previous skills. The regularization approaches in continual
earning consist in modifying the update of weights when learning in
rder to keep memory of previous knowledge. 

Basic regularization techniques that could be used for CL are weight
parsification, dropout [53] , and early stopping [97] . These simple reg-
larization techniques reduce the chance of weights being modified, and
hus decrease the probability of forgetting. More complex methods con-
ist in searching for important weights inside the models and protect
hem afterwards to prevent forgetting. The Fisher matrix can be used
o estimate the importance of weights and produce an adapted regular-
zation as for Elastic Weight Consolidation (EWC) approach [73] . For
fficiency purpose, EWC only use the diagonal of the Fisher matrix to
stimate importance. [131] proposes an alternative to get a better esti-
ation of the Fisher matrix using the Kronecker factorization. EWC ap-
roach needs to have clear task delimitation to compute Fisher matrix
t the end of the task, but Synaptic Intelligence (SI) [176] extended the
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ethod in an online learning fashion to relax this constraint. [80] pro-
ose to use a regularization method called incremental moment matching

o overcome catastrophic forgetting. This method saves the moment pos-
erior distribution of neural networks weights from past tasks and uses
t to regularize learning of a new task. Two different declinations of this
ethod are proposed: one with the use of first order moment IMM-mean

nd one with second order moment IMM-mode . 
Another method to apply regularization for continual learning is the

se of Conceptor [57,62] . Conceptor are memory mechanism that store
earned patterns and representation. They are used to guide the gradient
f the loss function to prevent forgetting and then favor modification for
ome weights and penalize others. 

The regularization methods have been shown to be efficient in rein-
orcement learning [73] , classification [57,73,131,176] and also gener-
tive models [111,145] . A limitation is that after several tasks the model
ay saturate because of a too high regularization, and finding a good

rade-off between regularization that allows learning without forgetting
ay be hard. 

.2.2. Knowledge distillation 

Distillation techniques were introduced by [60] in order to transfer
nowledge from neural network A to neural network B. The idea is that
fter A has learned to solve a task, we want B to share this skill with
. We then forward the same input to both A and B and impose B to
ave the same output as A. Distillation should be more efficient than
etraining B because A produces a soft-target that helps B to learn faster.
n order to apply this method for continual learning, after network A
earned to solve the first task, and while B is learning the second one, we
istill knowledge from A to B. In the end, B should be able to solve both
asks. This and related methods have been used in various approaches
33,48,68,105,136,144,160,171] . A drawback of distillation is that it
enerally needs to preserve a reservoir of persistent data learned for
ach task in order to apply distillation from a teacher model to a student
odel. Distillation can also be used to transfer policy learning from one
odel to another [136] . 

.3. Rehearsal approaches 

Rehearsal approaches gather all methods that save raw samples as
emory of past tasks. 

These samples are used to maintain knowledge about the past in
he model. Ideally, those samples are carefully chosen in order to be
epresentative of past tasks; by default, they can be randomly chosen. 

The initial strategy is to save the representative samples and incorpo-
ate them in the new training set [81,125] . In the second article samples
re chosen randomly for continual learning of generative models but in
125] the set is carefully sorted in order to keep the most representa-
ive samples into a coreset. This process allows to dynamically adapt the
eights of the feature extractor and strengthen the network connections

or memories already learned without forcing to keep previous weights.
However, the coreset can also be used for regularization purpose

nd not just to be replayed from time to time along with new data in
he learning process. 

For example, the coreset can be used for distillation in [132] and
n A-LTM (Active Long Term Memory Networks) [48] or to regular-
ze the gradient when learning new tasks as in GEM (Gradient Episodic
emory) [92] and A-GEM (Averaged Gradient Episodic Memory) [23] .
oresets have also been used to regularize the continual learning of a
enerative model in the CloGAN approach [130] . In a bayesian learning
etting the coreset can be incorporated into the prior to regularize learn-
ng update as in [111] . The authors experimented the use of a coreset
o create a variational continual learning model (VCL). 

The disadvantage of rehearsal approaches is the utilization of a sep-
rate memory of raw and unprocessed data which is a vanilla way of
aving knowledge that does not respect data privacy. Nevertheless it
nsure that the memories are not degraded through time. 
59 
.4. Generative replay 

Instead of modeling the past from few samples as it is done in Re-

earsal approaches, Generative Replay approaches train generative mod-
ls on the data distribution. Therefore, they are able to afterwards sam-
le data from past experience when learning on new data. By learning
n actual data and artificially generated past data, they ensure that the
nowledge and skills from the past is not forgotten. These methods have
lso been associated with the term pseudo-rehearsal [132] or Intrinsic Re-

lay [37] . They could be understood as methods that perform regenera-

ion of samples or internal states, and thus, they can be associated with
odel-based learning, where the model learns the data distribution of
ast experiences. The generative models is generally a GAN [52] as in
81,150,172] or an auto-encoder as in [20,37,69,70] . 

A classical method implementing a generative replay normally
akes use of dual models [41,69,70,150,172] . One frozen model gener-

tes samples from past experiences and another learns to generate and
lassify actual samples in addition to the regenerated ones. When a task
s over, we replace the frozen model by the actual one, freeze it, and
nitialize a new model to learn next task. 

Generative Replay models can be categorized into two different ap-
roaches: ”Marginal Replay ” and ”Conditional Replay ” [83] . Techniques
sing Marginal Replay make use of standard generative models, while
onditional Replay are a particular case of the former where the genera-
ive model is conditional. Conditional models can generate data from a
pecific condition, e.g. a class or a task. In continual learning, it allows
hen to choose from which past learning experience we want to gen-
rate. It is important for example to balance data in generated replay
83] . 

While most of the Generative Replay based approaches are meant to
olve classification tasks [69,70,130,150,172] , some models use it for
nsupervised learning [81,171] or reinforcement learning [20] . 

.5. Hybrid approaches 

Most CL approaches have an implicit dual architecture strategy, as
hey always have a slow learning and a fast learning mechanisms to
earn continually. For example, in rehearsal approaches ( Section 4.3 )
he stable model role is played by a memory that stores samples, in
enerative replay approaches ( Section 4.4 ) a generative model plays the
ole of stable model, in some regularization approaches ( Section 4.2.1 )
he stable model is played by the Fisher matrix which saves important
eights. 

Moreover, most of continual learning approaches do not rely on a
ingle strategy to tackle catastrophic forgetting. As stated in previous
ections, each approach offers advantages and disadvantages, but most
f the times, combining strategies allows to find the best solutions. We
ummarize in Table 2 and Fig. 2 the different approaches cited and the
trategies they propose. 

. Evaluation of continual learning algorithms 

Before applying CL solutions to autonomous agents, they should be
xperimented and evaluated in simulation or toy examples. It is crucial
o have a set of good evaluation metrics and benchmarks to assess if the
pproaches are scalable to real problems or may not solve harder ones.
n this section we summarize existing evaluation methods and bench-
arks and highlight some of them we believe worth using when target-

ng the deployment of practical CL applications. 

.1. Evaluation protocols and benchmarks 

In continual learning, the difficulty of learning on a sequence of tasks
s first of all dependant on the difficulty of each of the tasks separately.
f a task is difficult to learn, a model will have to deeply modify its
eights. If those weights contain knowledge from previous tasks, there
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Table 2 

Continual Learning Main Strategies. 

References Regularization Rehearsal Architectural Generative-Replay 

Zhou et al. [178] ✓
Goodfellow et al. [53] ✓
Lyubova et al. [94] ✓
Rusu et al. [136] ✓
Camoriano et al. [17] ✓ ✓
Furlanello et al. [48] ✓ ✓
Li et al. [87] (LwF) ✓ ✓
Rusu et al. [137] (PNN) ✓
Jung et al. [65] ✓ ✓
Aljundi et al. [3] ✓
Rebuffi et al. [125] (Icarl) ✓ ✓
Kirkpatrick et al. [73] (EWC) ✓
Fernando et al. [43] ✓
Lee et al. [80] ✓
Lee et al. [174] ✓
Triki et al. [161] ✓
Seff et al. [145] ✓
Shin [150] (DGR) ✓
Velez et al. [165] ✓
Lopez-Paz et al. [92] (GEM) ✓ ✓
Zenke et al. [176] (SI) ✓
Nguyen et al. [111] (VCL) ✓ ✓ ✓
Ramapuram et al. [124] ✓ ✓
Mallya et al. [96] ✓
Kamra et al. [69] ✓
Draelos et al. [37] ✓
Serra et al. [146] ✓
Mallya et al. [95] ✓
Parisi et al. [115] (GDM) ✓ ✓ ✓
He et al. [57] ✓ ✓
Hayes et al. [55] ✓
Wu et al. [172] ✓ ✓
Ritter et al. [131] ✓
Schwarz et al. [144] ✓
Maltoni et al. [97] ✓ ✓
Achille et al. [1] ✓ ✓
Wu et al. [171] (MeRGAN) ✓ ✓
Dhar et al. ✓
Lesort et al. [81] ✓
Caselles-Dupré et al. [20] ✓
Riemer et al. [127] (MER) ✓ ✓
Rios et al. [130] (CloGAN) ✓ ✓ ✓
Lesort et al. [83] ✓
Sprechmann et al. [154] ; ✓ ✓
Kemker et al. [70] (FearNet) ✓ ✓
Chaudhry et al. [23] ✓ ✓
Kalifou1 et al. [68] ✓ ✓
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s a high probability they will be degraded. On the other hand, the risk
f forgetting is also dependant on the likelihood of tasks occurring. In-
eed, after learning a task T t , it is easier for a neural network to learn a
adically different task 𝑇 𝑡 +1 without forgetting, than learning a task 𝑇 𝑡 +1 
ith similarities to T t [41] . 

There are several kinds of similarities in a sequence of tasks: 

• Similarities in learning objectives: They occur when the objective
is similar from task to task. For example, in a classification setting,
when the same classes are used from one task to another (e.g. Per-
muted MNIST), or in RL, the same tasks need to be achieved in dif-
ferent environments. 

• Similarities in features: the features from task to task are the same
or very similar (e.g. Rotation MNIST). 

Beyond the similarity among tasks and the learnability of each task,
he availability of data is primordial to evaluate the difficulty of a bench-
ark. For convenience, most of the classical benchmarks assume that

ach task is available long enough to learn a satisfying solution. Nev-
rtheless, even when there is no constraint on the time to learn a task,
ata from the past can not be available again in the future. In several
pproaches, past data is used for model selection, however using the
60 
erformance obtained on task T t to fine-tune a model that will learn on
 0 violates temporal causality [120] . Data might be saved for later use
s in rehearsal approaches, but this must be done before moving on to
he next task. 

Most CL benchmarks are benchmarks adapted from others fields, for
nstance: 

• Classification : MNIST [79] , Fashion-MNIST [173] , CIFAR10/100
[74] , Street View House Numbers (SVHN) [110] , CUB200 [168] ,
LSUN [175] , ImageNet [75] , Omniglot [77] or Pascal VOC [39] (ob-
ject detection and segmentation). 

• Reinforcement Learning : Arcade Learning Environment (ALE)
[8] for Atari games, SURREAL [40] for robot manipulation and
RoboTurk for robotic skill learning through imitation [98] , CRLMaze

extension of VizDoom [89] and DeepMind Lab [99] . 
• Generative models : Datasets that prevail in this domain are the

same as those used in classification tasks. 

These datasets are then split, artificially modified (e.g., with image
otations or permutation of pixels) or concatenated together to create
equences of tasks and build a continual learning setting. As an exam-
le, permuted MNIST [73] and rotated MNIST [92] are continual learn-
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Table 3 

Benchmarks and environments for continual learning. For each resource, paper use 
cases in the NI, NC and NIC scenarios are reported. 

Benchmark NI NC NIC Use Cases 

Split MNIST/Fashion MNIST ✓ [57,81,83,130] 

Rotation MNIST ✓ [83,92,127] 

Permutation MNIST ✓ [43,53,57,73,83,127,150,176] 

iCIFAR10/100 ✓ [70,97,125] 

SVHN ✓ [71,130,145] 

CUB200 ✓ [80] 

CORe50 ✓ ✓ ✓ [91,97,115] 

iCubWorld28 ✓ [90,116] 

iCubWorld-Transformation ✓ [16,117] 

LSUN ✓ [171] 

ImageNet ✓ [95,125] 

Omniglot ✓ [77,144] 

Pascal VOC ✓ [104,151] 

Atari ✓ [73,136,144] 

RNN CL benchmark ✓ [153] 

CRLMaze (based on VizDoom) ✓ [89] 

DeepMind Lab ✓ [99] 
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Table 4 

Accuracy matrix R : elements ac- 
counted to compute A (white & 

cyan), BWT (cyan), and FWT (gray). 
𝑅 

∗ = 𝑅 𝑖𝑖 , Tr i = training, Te i = test 
tasks. 
ng datasets artificially created from MNIST. Another possible continual
earning scenario is the use of naturally non i.i.d. datasets (e.g. NICO
58] ) or learning sequentially different datasets either on the same in-
ut space [80,146] or in a multi-modal fashion [71] . However, only
ew datasets, such as CORe50 [91] or [153] , are specifically built with
ontinual learning in mind. 

In robotics, numerous datasets are often recorded in a online fash-
on through video. Therefore, they are suitable to evaluate continual
earning algorithms. As an example, those proposed by [4,116,117] are
omposed of sequences of images captured during robotics object ma-
ipulation; they are used for classification and detection algorithms. A
ummary of the main datasets and examples of their applications can be
ound in Table 3 . 

.2. Continual learning metrics 

Following the evaluation of an algorithm on a challenging bench-
ark, we should make sure that the evaluation criteria are rigorous and

over the whole aspect of the full learning problematic. It is not enough
o observe good final accuracy on an algorithm to know if it is trans-
erable to a robotics settings. We should also evaluate how fast it learns
nd forgets, if the algorithm is able to transfer knowledge from one task
o another, and if the algorithm is stable and efficient while learning.
n this section we gather a set of metrics to rigorously evaluate a CL
pproach. 

For a rigorous evaluation, we can assume to have access to series
f test sets Te i . The aim is to assess and disentangle the performance
f our hypothesis h i as well as to evaluate if it is representative of the
nowledge that should be learned by the corresponding training batch
r i . 

For instance, one example of such evaluation is one of the first met-
ics proposed for CL [56] ; it consists of an overall performance Ω in a
upervised classification setting. It is based on the relative performance
f an incrementally trained algorithm with respect to an offline trained
lgorithm (which has access to all the data at once). In our notation, Ω
s: 

= 

1 
𝑁 

𝑁 ∑
𝑖 =1 

𝑅 𝑖,𝑖 

𝑅 

𝐶 
𝑖,𝑖 

. (2)

Where N is the number of tasks encountered, 𝑅 

𝐶 
𝑖,𝑗 

is the potentially

est accuracy we can have on 𝑇 𝑒 𝐶 
𝑖 

if the model was trained with all data
t once, i.e. on 𝑇 𝑟 𝐶 

𝑖 
(the accumulation of training sets 𝑇 𝑟 𝐶 

𝑡 
from t = 0 to

 = i). 𝑇 𝑒 𝐶 
𝑖 

is the accumulation of all test sets 𝑇 𝑒 𝐶 
𝑡 

from 𝑡 = 0 to 𝑡 = 𝑖 . Ω =
 indicates identical performance to an off-line cumulative setting; an Ω
61 
arger than one is possible when the offline model is worse than trained
n a CL paradigm. 

In [146] , instead, the authors try to directly model forgetting with
he proposed forgetting ratio metric 𝜌 after learning i tasks, defined as: 

𝑗≤ 𝑖 = 

1 
𝑁 

𝑁 ∑
𝑖 

𝑁 ∑
𝑗 

( 

𝑅 𝑖𝑗 − 𝑅 

𝑅 
𝑗 

𝑅 

𝐶 
𝑖𝑗 
− 𝑅 

𝑅 
𝑗 

− 1 

) 

(3) 

here, 𝑅 

𝑅 
𝑗 

is the accuracy of a random stratified classifier using the
lass information of task j . 

Always in the same sequential setting, in [92] other three impor-
ant metrics are proposed: Average Accuracy (ACC), Backward Transfer

BWT), and Forward Transfer (FWT). In this case, after the model fin-
shes learning about the training batch Tr i , its performance is evaluated
n all (even future) test batches Te j . 

The larger these metrics, the better the model. If two models have
imilar ACC, the preferred one is the one with larger BWT and FWT.
ote that it is meaningless to discuss backward transfer for the first
atch, or forward transfer for the last batch. The metrics are extended for
ore fine grained, generic evaluation [34] so that the original accuracy

92] (as well as BWT and FWT) can account for performance at every

imestep in time . Accuracy is defined as: 

 = 

∑𝑁 

𝑖 =1 
∑𝑖 

𝑗=1 𝑅 𝑖,𝑗 

𝑁 ( 𝑁 +1) 
2 

(4) 

here 𝑅 ∈ ℝ 

𝑁𝑒𝑠𝑁 is the training-test accuracy matrix that contains in
ach entry R i,j the test classification accuracy of the model on task t j 
fter observing the last sample from task t i , Accuracy (A) considers the
verage accuracy for training set Tr i and test set Te j by considering the
iagonal elements of R , as well as all elements below it (i.e., averages
 i,j s where 𝑖 > = 𝑗 see Table 4 ). 

Backward Transfer (BWT) measures the influence that learning a task
as on the performance on previous tasks. It is defined as the accuracy
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omputed on Te i right after learning Tr i as well as at the end of the last
ask on the same test set (see Table 4 in light cyan). 

𝑊 𝑇 = 

∑𝑁 

𝑖 =2 
∑𝑖 −1 
𝑗=1 ( 𝑅 𝑖,𝑗 − 𝑅 𝑗,𝑗 ) 
𝑁 ( 𝑁 −1) 

2 

(5)

he original BWT [22,92] is extended into two terms to distinguish
mong two semantically different concepts (so that, as the rest of met-
ics, is to be maximized and in [0,1]). 

𝐸𝑀 = 1 − |𝑚𝑖𝑛 ( 𝐵𝑊 𝑇 , 0) | (6)

.e., Remembering , and (the originally positive) BWT, i.e., improvement
ver time, Positive Backward Transfer : 

 𝑊 𝑇 + = 𝑚𝑎𝑥 ( 𝐵 𝑊 𝑇 , 0) (7)

Likewise, the FWT redefined to account for the dynamics of CL at
ach timestep is 

 𝑊 𝑇 = 

∑𝑗−1 
𝑖 =1 

∑𝑁 

𝑗=1 𝑅 𝑖,𝑗 

𝑁 ( 𝑁 −1) 
2 

(8)

FWT accounts for the train-test accuracy entries R i,j above the prin-
ipal diagonal of R , excluding it (see elements accounted in Table 4 in
ight gray). Forward transfer can occur when the model is able to per-
orm zero-shot learning. 

A Learning Curve Area (LCA) ( ∈ [0, 1]) metric to quantify the learn-
ng speed by a CL strategy is proposed in [23] . It uses the b -shot per-
ormance (where b is the mini-batch number) after being trained for all
he N tasks: 

 𝑏 = 

1 
𝑁 

𝑁 ∑
𝑖 =1 

𝑎 𝑖,𝑏,𝑖 (9)

here a i,k,j ∈ [0, 1] is the accuracy evaluated on the test set of task j
fter the model has been trained with the k -th mini-batch of task i . This
mount is equivalent to previous accuracy matrix entry R ij but at a lower
ranularity of a batch level. a i,k,j is used to define a forgetting measure
[−1 , 1] that quantifies the drop in accuracy on previous tasks [22] . 𝑓 𝑘 

𝑗 

s the forgetting on task j after the model is trained with all mini-batches
p to task k : 

 

𝑘 
𝑗 
= max 

𝑙∈1 ,.,𝑘 −1 
𝑎 𝑙,𝐵 𝑙 ,𝑗 

− 𝑎 𝑘,𝐵 𝑘 ,𝑗 
(10)

here B i is all mini-batches corresponding to training dataset of task k
  𝑘 ). 

LCA 𝛽 is the area of the convergence curve Z b during training as a
unction of b ∈ [0, 𝛽]: 

𝐶𝐴 𝛽 = 

1 
𝛽 + 1 ∫

𝛽

0 
𝑍 𝑏 𝑑𝑏 = 

1 
𝛽 + 1 

𝛽∑
𝑏 =0 

𝑍 𝑏 (11)

he interpretation of LCA is intuitive: an LCA 0 is the average 0-shot per-
ormance (FWT), and LCA 𝛽 is the area under the Z b curve, which is high
f the 0-shot performance is good and if the learner learns quickly. LCA
ims at disambiguating the performance of models that may have the
ame Z b or A T , but very different LCA 𝛽 because despite both eventually
btaining the same final accuracy, one may learn much faster than the
ther. 

While forgetting and knowledge transfer could be quantified and
valuated in various ways, as argued in [41,56,71] , these may not suf-
ce for a robust evaluation of CL strategies. For example, in order to
etter understand the different properties of each strategy in different
onditions, especially for embedded systems and robotics, it would be
nteresting to keep track and unambiguously determine the amount of
omputation and memory resources exploited. In this context, the met-
ics proposed in [92] are extended in [34] to unify in a common evalua-
ion framework different infrastructural and operational metrics. Other
ractical metrics included are Model Size (MS), Samples Storage Size
SSS) efficiency and Computational Efficiency (CE). We briefly describe
hem next. 
62 
The memory size of model h i is quantified in terms of parameters 𝜃
t each task i, Mem ( 𝜃i ); with the idea that it should not grow too rapidly
ith respect to the size of the model that learned the first task, Mem ( 𝜃1 ):

𝑆 = 𝑚𝑖𝑛 

⎛ ⎜ ⎜ ⎝ 1 , 
∑𝑁 

𝑖 =1 
𝑀𝑒𝑚 ( 𝜃1 ) 
𝑀𝑒𝑚 ( 𝜃𝑖 ) 

𝑁 

⎞ ⎟ ⎟ ⎠ (12)

Some CL approaches save training samples (or generative replay gen-
rated samples) as a replay strategy to not forget. The Samples Storage
ize (SSS) efficiency establishes a metric for the memory occupation in
its by the samples storage memory M, Mem ( M ), to be bound by the
ccupation of the total number of examples encountered at the end of
ast task: 

 𝑆 𝑆 = 1 − 𝑚𝑖𝑛 

⎛ ⎜ ⎜ ⎝ 1 , 
∑𝑁 

𝑖 =1 
𝑀𝑒𝑚 ( 𝑀 𝑖 ) 
𝑀𝑒𝑚 ( 𝐷) 

𝑁 

⎞ ⎟ ⎟ ⎠ (13)

here D is the lifetime dataset associated to all distributions  . 
A metric that bounds the Computational efficiency (CE) by the num-

er of operations for training set Tr i is defined as: 

𝐸 = 𝑚𝑖𝑛 

⎛ ⎜ ⎜ ⎝ 1 , 
∑𝑁 

𝑖 =1 
𝑂𝑝𝑠 ↑↓( 𝑇 𝑟 𝑖 ) ⋅𝜀 
1+ 𝑂𝑝𝑠 ( 𝑇 𝑟 𝑖 ) 

𝑁 

⎞ ⎟ ⎟ ⎠ (14)

here Ops ( Tr i ) is the number of (mul-adds) operations needed to learn
r i , Ops ↑↓( Tr i ) are the operations required to do one forward and one
ackward (backprop) pass on Tr i , and 𝜀 is a scaling factor (associated to
he nr of epochs needed to learn Tr i ). Overall CL score and CL stability met-
ics are also finally proposed [34] in order to aggregate different criteria
o be maximized that allow to rank CL strategies. In order to assess a CL
lgorithm A 

CL , each criterion to be optimized by the CL model, 𝑐 𝑖 ∈ 
where c i ∈ [0, 1]) is assigned a weight w i ∈ [0, 1] where 

∑ 
𝑖 
𝑤 𝑖 = 1 .

ach c i is the average of r runs, and the final CL score to maximize is
omputed as: 

𝐿 𝑠𝑐𝑜𝑟𝑒 = 

#  ∑
𝑖 =1 

𝑤 𝑖 𝑐 𝑖 (15)

here each final criterion c i is to be maximized by a CL algorithm.
L stability is the pondered standard deviation of each CL metric [34] :

𝐿 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 − 

#  ∑
𝑖 =1 

𝑤 𝑖 𝜎( 𝑐 𝑖 ) (16)

ith 𝜎( c i ) the standard deviation of criterion c i . 
In future evaluation scenarios, particularly in robotics, stability is an-

ther important property that should be evaluated since in many robotic
asks and safety-critical conditions, potential abrupt performance drifts
ould be a major concern when learning continuously. The metrics pre-

ented here can also be combined to assess higher-level capabilities. As
n example, if we are to assess the scalability of a CL algorithm, one
ould use a weighted average of SSS, MS , and CE . 

The metrics presented in a supervised classification context [34] can
lso be generalized with different performance measure P , instead of
ccuracy, and used in different settings such as reinforcement and un-
upervised learning. For instance, they can be extended to RL; the un-
erlying performance metric is, instead of accuracy, the accumulated
eward on test episodes. In general in RL, cumulative reward plots over
ime are common norm to evaluate policy learning algorithms. Extra
erformance metrics in RL tasks will very much depend on the task be-
ng assessed, the reward function, and other evaluation metrics that act
s evaluation proxies , as it is common in semi/unsupervised learning
ettings. 

The evaluation of generative models in any setting is challeng-
ng. Fréchet Inception Score (FID) [59] is a common metric that com-
ares features from generated data and true data. Inception Score (IS)
139] has also been widely used as a proxy to evaluate the quality of
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enerative models. It measures if the class of generated samples are var-
ed by making use of a model trained on ImageNet. One shortcoming of
hese scores is that they may be maximized by over-fitting generative
odels. Another evaluation method is using generated data to train a

lassifier and evaluate its accuracy on a test set of true data [85] . The
est accuracy, called Fitting Capacity (FC) gives a proxy on the quality
f the generated data. Fitting Capacity and Fréchet Inception Score were
sed in a CL setting in [81,83] . 

More methods for evaluating generative models are described and
ssessed more in depth in [11,61] ; however, they have never been used
n a CL setting. In any case, the need for real data is mandatory in most
valuation schemes. In a CL setting, evaluating the generation of data
rom past tasks may need to violate the data availability assumption.
he different metrics for generative models may then be useful tools
or example for evaluating generative replay methods; however, they
ave to be manipulated carefully to be incorporated into the continual
earning spirit. 

. Continual learning for robotics 

In the previous section we listed and described the different existing
ypes of strategies to tackle continual learning. In this section, we will
resent real use cases of CL with an emphasis on robotics applications.
irst, we present why continual learning is crucial for robotics, and then,
he challenges that robotics face in CL tasks. Finally, we present concrete
obotic applications with potential insights to draw from CL. 

.1. Opportunities for continual learning in robotics 

A robot is an agent that interacts with the real world. It means that
t can not go back in time to improve what it has learn in the past. These
articularities of robotic platforms make them a natural playground for
L algorithms. Furthermore, robots suffer from several constraints in
erms of power or memory, and that is exactly what CL intends to op-
imize, in the way it addresses learning problems. On the other hand,
obots have rich information about their experiences. They are in con-
rol of their interaction with the environment, which may help them
nderstanding the concept of causality, and extracting knowledge from
ifferent kinds of sensors (images, sound, depth...). This rich informa-
ion helps machines to produce strong representations which are crucial
or a well performing CL algorithm [82] . 

We could almost conclude that CL is born for robotics, and it may be
rue; however, today most of CL approaches are not robotics related and
ather focus on experiments on image processing or simulated environ-
ents. Next section will present the challenges that make CL difficult to

pply in robotic environments. 

.2. Challenges of continual learning in robotics 

.2.1. Robotics hardware 

The first challenge to deal with when doing any experiment with
obots is the hardware. Robots are known to be unstable and fragile.
obot failures are one of the main restrictions for researchers to pro-
ose new approaches on robotics tasks. They add unavoidable delay in
ny experiment and are expensive to fix. Moreover, if the failure is not
ardware but software, since it is not possible to reset the state of the
obot automatically, manual help is often needed, e.g., to put back the
obot in his starting position or recover it from an irrecoverable state.
urthermore, most of the time building or buying a robot is itself quite
ostly. Once the robot is correctly working, one new problem arises,
hich is its autonomy in terms of energy. This aspect is also a main dif-
culty to deal with when experiments need to be set. It is difficult to
rogram long experiments without manually recharging the robot and
aking sure that it will not stop by a lack of power supply or failure.

astly, robots are embedded platforms and, consequently, have limited
63 
emory and computation resources, which should be carefully managed
o avoid overflow. 

The difficulties of using robots in experiments explain why there are
o few approaches of continual learning with robots in the literature.
n the next section, we will see how robotic environments challenge
ontinual learning algorithms. 

.2.2. Data sampling 

When a robot needs to learn a task in a known or unknown envi-
onment, it must collect its own training data in the real world [170] .
ata serves as the basis for environment exploration and comprehen-

ion. This problematic is exactly the same as the one met by RL al-
orithms [157] . In infants, a crucial component of lifelong learning
s the ability to autonomously generate goals and explore the envi-
onment driven by intrinsic motivation [18,113] . Self-supervised ap-
roaches [86,121,149,170] also help to automatically explore environ-
ents. Curiosity [15] and self-supervision [35] allow to search for new

xperiences (or data) and build a base of knowledge useful to achieve
ctual or future tasks via transfer learning [115] . As an example, manip-
lation tasks [72] such as grasping [121] , reaching [26,123] , pushing
uttons [84] , throwing [72,155] or stacking [26] objects (cubes, balls...)
re common complex tasks built on comprehensive sets of experiments.

Data gathered in this way can then be used on the fly in an online
earning process or stored for later processing. 

However, in order to improve learning algorithms the need for anno-
ations or external help is crucial. In the next subsection we will describe
he particular needs for annotations in robotics. 

.2.3. Data labeling 

As seen in previous section, gathering a varied set of raw data is al-
eady a difficult task. However, using it and understanding it is even
ore tedious. In this section, we detail different needs for labelling that

utonomous agents such as robots need. First of all, to understand its
nvironment, a robot will need to apprehend the objects that compose
t. To do so, the robot will need at some point that an external expert
ssesses that the object representation learned is good. This is the first
ind of label the robot will need, i.e., object labelling [28,30] . Secondly,
f we want the robot to perform a certain task, it will need to get infor-
ation about the goals we gave it and also what it should not do. This

s generally done by a reward function that defines credit assignment
106] , or it can also be defined internally by more abstract rules such as
elf-supervision [54,152] , intrinsic motivation or curiosity [113,142] as
n [27,30,46,78] . Thirdly, the robot should know when the task changes,
nd what task it should try to solve. This process consists of labelling
he task; and the label is called the task identifier [92] . 

All these types of labels are not mandatory, but they drastically help
nd impact the learning process. The downside of labelling is that it
s expensive and time consuming, which slows down the learning algo-
ithms. To tackle those two problems, CL needs to find efficient solutions
hat can make the best out of the available labels for learning. 

The specific fields that aim at answering these questions are few-shot
earning [42,76] and active learning [148] . The former tries to grasp a
oncept from very few data points. Active learning aims at identifying
nd selecting the most needed labels in order to maximize learning. By
ombining optimization procedures in learning from few instances and
inimizing the needs for labels, the field of robotics could be more suit-

ble for leveraging continual learning settings in the real world. Further-
ore, efficiency in learning reduces the risks of forgetting and degrading
emories. 

.2.4. Learning algorithms stability 

In continual learning, algorithms face several learning experiences in
 row. From each learning experience, some memory should be saved
o later prevent for not forgetting. The stability of learning algorithms is
hen crucial: if only one learning experience fails, the whole process may
e corrupted. Moreover, if we respect the continual learning causality,
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Fig. 3. Sample tasks tested for unsupervised open-ended learning [36,123] and 
continual learning settings [68] in a couple of robotics labs, among others, from 

the DREAM project ( www.robotsthatdream.eu ). 
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e can not go back one or several tasks earlier in time in order to fix
n actual problem. The corruption of one learning experience can lead
o the corruption of memories and then to the model degradation when
earning later tasks. The needs for robust mechanisms to validate or
eject results of a learning algorithm is key to keep sane memories and
eights; however, the instability of deep learning models must also be
ddressed to improve this drawback. As an example, generative models
re powerful tools for continual learning but their instability may make
hem unsuitable for this kind of setting [81] . Reinforcement learning
lgorithms are also known to be unstable and unpredictable, which is
isastrous for continual learning. 

.3. Applications 

Real-word applications of continual learning are virtually unlimited.
n fact, any learning algorithm that needs to deal with the real world will
ace a non i.i.d. data stream. This as well happens for autonomous robots
hat learn new manipulation tasks, for exploration policies, as well as
or autonomous vehicles that need to learn and adapt to new circum-
tances [10,25,63,126] . Non-static settings are also faced by algorithms
hat learn how to predict trends based on data streams from internet user
ctivities, e.g., among others, for advertisement or finance. This prob-
em is likewise confronted when an already trained algorithms needs to
cquire new knowledge without forgetting, e.g., recognize new classes
or classification, anomaly detection, etc. However, in this section we
ocus on specific continual learning use cases on robotics. 

.3.1. Perception 

While the world of perception is a multi-faceted topic at the very
enter of every application on autonomous sytems, the vast majority
f CL algorithms in the literature are evaluated on object recognition
asks. Most models, indeed, are evaluated on datasets including static
r moving objects. This is motivated by the fact that before any fur-
her action or policy, an autonomous agent (or robot) needs to identify
he different component of its environment. In the case of classification,
he robot may be pre-trained from an initial dataset. However, in any
nvironment the robot would probably need to learn new objects from
he new domain, and new variants (different poses, lighting, aspect) of
lready learned objects should be leveraged to improve its recognition
94] capabilities. CL is crucial to tackle such dynamic scenarios. Ini-
ial progresses in this area have been proposed in [16,90,91,116,159] .
oncrete Continual learning approaches to object segmentation can be

ound in [104,105] , and in object detection in [151] . 
Visual saliency for semantic segmentation and unsupervised object

etection are other equally important applications in the context of per-
eption which have been recently explored under continual learning
nd robotics settings [29] . RL-IAC (RL Intelligent Adaptive Curiosity),
n particular, explores to learn visual saliency incrementally [30] with
n articulated autonomous exploration technique based on curiosity to
fficiently and continually learn a saliency model in a complex robotics
nvironment tested in the real-world. 

A classic problem in robotics within inherently continual learning
ettings are simultaneous localization and mapping (SLAM) [21] and
avigation [159] . In [159] , using a HERO-2000 mobile robot with a
adar sensor a continual learning algorithm based on explanation-based
eural network learning (EBNN) is proposed to perform room mapping
nd navigation. Action models in EBNN explain (in terms of previous ex-
eriences) and analyze observations to transfer task-independent (nav-
gation) knowledge via predicting collisions and their prediction cer-
ainty. 

.3.2. Reinforcement learning 

In reinforcement learning the data distribution is dependent on the
ctions taken by the controlled agent. Therefore, since the actions taken
re not random, data is not i.i.d. and the data distribution is not station-
ry. In the context of reinforcement learning similar techniques to those
64 
roposed in CL are often adopted in order to learn over a data distribu-
ion which is approximately stationary. An example of such techniques
s the use of a external memory for rehearsal purposes, also know as
xperience or memory replay buffer [55,88,141] . 

The first challenge for RL is the extraction of representations to un-
erstand and compact what is relevant from the input data [82] . Con-
inual learning of state representations for RL is intrinsically close to
nsupervised learning or representation learning for classification; the
ethods used in both cases may then be very similar or worth leveraging

cross. 
The second RL challenge is learning a policy to solve a specific task.

he CL challenge of policy learning is different because it often should
ake into account both state and context. Context is usually handled with
ecurrent neural networks, and this kind of model is not yet been studied
xtensively in CL; one example is in [153] . Different robot manipulation
asks such as grasping and reaching objects that are used as benchmarks
an be seen in Fig. 3 and, for instance, in state representation learning for
obotics goal-based tasks [68,123] . These two challenges face continual
earning problems, to learn representations and to learn policies from
on stationary data distributions. However, it is worth distinguishing
mong both problems because learning and transfer between tasks are
ifferent challenges. Two tasks may need similar representations with
ifferent policies, while similar policies may require dissimilar repre-
entations. 

In the context of robotics, fewer RL approaches have been proposed
han in video-games or simulation settings. In particular, this is due to
he low data efficiency of RL algorithms [123] . We can still note sev-
ral approaches that successfully tackle this problem, either in an end-
o-end manner [67,121] , or by splitting the two challenges to address
hem separately, i.e., by first learning a state representation [82] and
ater performing policy learning [2,38,45,64,100,164] . Nevertheless, a
olution to this problem is to learn the policy in simulation and transfer
t to deploy it in a real world robot [10,49,68,138] . 

.3.3. Model-based learning 

Smoothly moving and interacting with always different, unpre-
ictable environments, while constructing a coherent model of the ex-
ernal world, is one of the holy grail of robotics. For many years, re-
earchers in this area have tried to propose robust and general enough
ensory-motor solutions to complex problems such as navigation or ob-
ect grasping. However, as it appears to be also true for humans, there
ill always be an environment or situation in which our biased model
f the world fails and adaptation is needed. 

http://www.robotsthatdream.eu
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7 http://www.robotsthatdream.eu . 
Online (inverse dynamics) learning has also been applied in robotics,
ut generally not using deep learning. In [17,133] , the inverse and semi-
arametric dynamics of an iCub humanoid robot is learned in an incre-
ental manner. This means both parametric modelling (based on rigid

ody dynamics equations) and nonparametric modelling (using incre-
ental kernel methods) are used. In [134] it is shown that derivative-

ree models outperform numerical differentiation schemes in online set-
ings when applied to non parametric (e.g. Gaussian processes with ker-
el function) model structures. 

In the pioneering work by [159] , a model of both the external
orld and the robot itself is incrementally learned through reinforce-
ent learning in complex navigation tasks on a real robot. However,

ncrementally and autonomously building a causal model of the exter-
al world, still remains a poorly explored topic in the context of robotics.
evertheless, as it has been shown in recent RL literature, a model-based
pproach may be of fundamental importance in the real-world where
illions of trials and errors are not always conceivable. 

. Discussion and conclusion 

Several notions appear to be crucial to clearly describe learning al-
orithms in CL settings, fairly compare them and transfer them from
imulation to real autonomous systems and robotics. First of all, identi-
ying the exact problem we want to solve, and what are the existing con-
traints is mandatory. The framework we introduce in Section 3 should
ssist to achieve the characterization of these settings. This formal step
elps finding the proper approach to use and identifying similarities
ith other settings. Secondly, in the same spirit of defining what we
ant to learn, it is important to define the level of supervision we are
ble to give to our learning algorithm. For example, if we can give it the
ask label, or some kind of information about the structure of the input
ata stream (number of classes, type of data distribution, number of in-
tances of each task, etc.). This point is also discussed in our proposed
ramework ( Section 3 ). Finally, it is important to exactly clarify what
s the expected performance of the algorithm. The set of metrics and
enchmarks gathered in Section 5 should help defining and articulating
he dimension of evaluation for important properties worth considering
n the development of embodied agents that learn continually. 

For more concrete indications on what we consider worthwhile
hecking while creating a CL approach, we suggest a set of recommenda-
ions. After defining in Section 3 a set of assumptions, constraints, relax-
tions and desiderata of CL algorithms, the following concrete measure
nd action-based guidelines aim at being taken into account as general
dvice to palliate limiting factors of CL models in the literature. 

ecommendation 1. On-line capabilities: CL algorithms should not as-
ume the number of total tasks to be solved is given beforehand. 

ecommendation 2. Learning complexity: We recommend keeping the
earning model complexity below an upper bound of a linear growth in
erms of the number of parameter growth when performing architectural
ynamic changes. 

ecommendation 3. Scalability evaluation: In order to provide a
roper evaluation of the scalability and continual learning performance,
e recommend, as the authors from [41] , to evaluate algorithms on
ore than two tasks. 

ecommendation 4. Memory limitation: In order for realistic CL sys-
ems to be practical, they should not assume unlimited memory re-
ources. 

ecommendation 5. Reporting metrics: We recommend reporting as
any metrics as possible and at least final performance, forward and

ackward (learning) transfer, the model’s remembering capacity, model
emory size, samples storage size, computational efficiency, CL score

nd stability metrics as described in Section 5.2 . 
65 
ecommendation 6. Offline baselines: we recommend the usage of
ublicly available baselines for metrics computation and fair assessment
or reproducibility purposes. 

ecommendation 7. Ablation studies: we recommend reporting abla-
ion studies to motivate as best as possible the different components and
hoices made in the CL algorithm such as initialization settings (using
re-trained network or not), optimization methods, hyper-parameters
nd surrogate losses used, etc. 

ecommendation 8. Distributional shifts: We recommend to formally
escribe the mechanism to handle distributional shifts, not only when
asks change, but also among batches where data points conform to dif-
erent distributions. 

ecommendation 9. Benchmarks: We recommend the use of complex
atasets with realistic and higher resolution scales than MNIST and CI-
AR100; the use of the former is seen as a limiting factor and not a
ealistic robustness assessment method for CL (see Section 5.1 ). 

ecommendation 10. Report precisely and clearly how an approach
earns and the assumptions it makes, as described in the framework
 Section 3 ). 

To summarize, in this paper, we proposed a generalized framework
o hold a variety of CL strategies and make easier the connection be-
ween machine learning and robotics in continual learning settings. We
eviewed the state of the art in continual learning and illustrated how
o use the proposed framework to present various approaches. We also
iscussed benchmarks and evaluation techniques currently being used
n continual learning algorithms. We hope it helps the AI community to
etter categorize and compare approaches, as well as to smoothly adapt
o today’s industry problems. Machine learning and robotics are fields
ndergoing an aggressive development period. We believe that push-
ng them forward to find formalization solutions to facilitate transfer
etween both fields is critical in order to understand each other, and
ake them profit from each other’s successes. 
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