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Highlights
Modern machine learning excels at train-
ing powerful models from fixed datasets
and stationary environments, often ex-
ceeding human-level ability.

Yet, thesemodels fail to emulate the pro-
cess of human learning,which is efficient,
robust, and able to learn incrementally,
from sequential experience in a non-
stationary world.
Artificial intelligence research has seen enormous progress over the past few de-
cades, but it predominantly relies on fixed datasets and stationary environments.
Continual learning is an increasingly relevant area of study that asks how artificial
systems might learn sequentially, as biological systems do, from a continuous
stream of correlated data. In the present review, we relate continual learning to
the learning dynamics of neural networks, highlighting the potential it has to con-
siderably improve data efficiency. We further consider the many new biologically
inspired approaches that have emerged in recent years, focusing on those that
utilize regularization, modularity, memory, and meta-learning, and highlight
some of the most promising and impactful directions.
Insights into this limitation can be
gleaned from the nature of neural net-
work optimization, which implies that
continual learning techniques could radi-
cally improve deep learning as well as
open the door to new application areas.

Promising approaches for continual
learning can be found at themost granu-
lar level, with gradient-based methods,
as well as at the architectural level, with
modular andmemory-based approaches.
We also consider meta-learning as a po-
tentially important direction.
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The World Is Not Stationary
A common benchmark for success in artificial intelligence is the ability to emulate human learning.
We measure the abilities of humans to recognize images, play games, and drive a car, to name a
few, and then develop machine learning models that can match or exceed these given enough
training data. This paradigm puts the emphasis on the end result, rather than the learning pro-
cess, and overlooks a critical characteristic of human learning: that it is robust to changing
tasks and sequential experience. It is perhaps unsurprising that humans can learn this way,
after all, time is irreversible and the world is non-stationary (see Glossary), so human learning
has evolved to thrive in dynamic learning settings. However, this robustness is in stark contrast
to the most powerful modern machine learning methods, which perform well only when pre-
sented with data that are carefully shuffled, balanced, and homogenized. Not only do these
models underperform when presented with changing or incremental data regimes, in some
cases they fail completely or suffer from rapid performance degradation on earlier learned
tasks, known as catastrophic forgetting.

What might be gained by developing neural network models that learn sequentially like
humans? First of all, many applications could benefit from continual adaptation to a changing tar-
get specification: for example, visual recognition algorithms that need to learn a diverse, growing
set of image classes; or household robots that need to incrementally add skills to their repertoire.
Continual learning techniques could enable models to acquire specialized solutions without for-
getting previous ones, potentially learning over a lifetime, as a human does. In fact, continual
learning is generally considered one of the attributes necessary for human-level artificial general
intelligence [1]. More fundamentally, continual learning methods could offer enormous advan-
tages for deep neural networks even in stationary settings, by improving learning efficiency as
well as by enabling knowledge transfer between related tasks.

This article will first motivate a taxonomy of continual learning approaches through describing
their connections with biological systems. Just as continual learning in humans cannot be re-
duced to a single biological mechanism, but is rather the product of multiple systems that
range from the synaptic plasticity of single neurons to the entire memory system, continual
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Glossary
Backward transfer: the ability to
transfer knowledge from a current task
to improve performance on a previously
learned task.
Catastrophic forgetting: a
phenomenon observed in neural
networks where learning a new task
significantly degrades performance on
previous tasks.
Credit assignment: determining how
different parameters in a neural network
are responsible for the desired behavior
of the network.
Curriculum learning: the task of
finding the optimal ordering of a series of
tasks such that learning is cumulative
and efficiency increases on the following
tasks.
Descent direction: direction given by
the negative gradient. If the parameters
of the model are changed by taking a
small step in this direction, the loss
function will decrease.
Forward transfer: the ability to transfer
knowledge from previous tasks to
improve performance and learning
efficiency on a related future task.
Gradient: the derivative of the loss
function with respect to the parameters
of the model, indicating the direction that
learning needs to proceed in order to
improve performance.
Gradient descent: given a continuous
loss function, there exists a linear
approximation where the slope in the
high-dimensional case is called the
gradient of the function. Moving along
the gradient ensures minimizing the
linear approximation and hence the true
function as well. However this only holds
locally, where the linear approximation is
reliable, hence the iterative nature of the
algorithm, as one can only take a small
step in the descent direction, restricted
by how much the approximation holds.
Independent and identically
distributed (IID): an assumption
underpinningmuch of the state of the art
in modern machine learning.
Inductive biases: the set of
assumptions made by a machine
learning algorithm in order to generalize,
such as the model architecture or
assumptions about the target domain.
Loss function: a quantity that a model
tries to minimize during learning, such as
the error between true and predicted
outputs.
Neural network: a mathematical
model containing layers of units or
‘neurons’ connected with learnable
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learning in artificial neural networks is not trivial to implement and will likely require a combination
of strategies. Before exploring these different approaches in detail, we will delve into the dynamics
of gradient-based learning algorithms to understand the challenges of continual learning with ar-
tificial neural networks.

Grounding Continual Learning in Biological Systems
The study of the natural world and its intelligent species has frequently intersected with artificial
intelligence research, including in aspects pertaining to continual learning [1]. Biology offers an ex-
istence proof for successful continual learning in complex environments and also hints at the de-
sign principles and trade-offs of successful approaches. There are multiple mechanisms that
enable biological systems to adapt in changing environments without intransigence or forgetting.
Thus, in this section we introduce four continual learning paradigms through analogy to their bi-
ological equivalents, saving a fuller discussion of each approach for following sections. Addition-
ally, the approaches can be succinctly described by depicting their canonical models, as in
Figure 1 (Key Figure).

Gradient-based continual learning methods (see ‘Gradient-Based Solutions’) can be understood
as distant relatives of models of synaptic plasticity. Mammalian brains have been shown to have
complex mechanisms at the synaptic level, which protect against interference between old and
new knowledge, or even conflicting facts and skills [2]. Synaptic plasticity has been studied for
decades, with recent studies demonstrating remarkably precise and effective consolidation
mechanisms occurring even over very short timescales [3]. Some continual learning approaches
have successfully demonstrated simplified mechanisms built on such principles [4,5], but many
core capabilities remain elusive.

Modularity is another paradigm that artificial systems might use to enable continual learning (see
‘Modular Architectures’). From an evolutionary perspective, it is not coincidental that successful
survival in increasingly complex environments is correlated with strong differentiation and special-
ization of nervous systems. Indeed, biological brains are modular, with distinct yet interacting
subsystems (e.g., for memory or motor control). Evidence of modularity extends beyond ana-
tomic features to functional separation in terms of sparse activations and hierarchical organization
[6].

Memory systems in the brain are evidently critical for human learning and are the inspiration for
memory-based continual learning in artificial neural networks (see ‘Memory for Artificial Learning
Systems’). Although the complex interactions between synaptic plasticity, episodic memory, and
semantic memory are yet to be fully described by neuroscience, it is clear that memory is the bas-
tion that protects human learning and adaptation over a long lifetime of varied experience [7].

Lastly, meta-learning for continual learning (see ‘Meta-Learning: Discovering Inductive Biases for
Continual Learning’) is an approach that is motivated by the brain’s ability to synthesize novel so-
lutions after limited experience [8]. Through applyingmachine learning to optimize the learning ap-
proach itself, thus learning-to-learn, meta-learning hopes to achieve the same sort of rapid,
general adaptation that biological systems demonstrate.

Defining Continual Learning
The problem of continual learning is typically defined by the sequential training protocol and by the
features expected from the solution. In contrast to the common machine learning setting of a
static dataset or environment, the continual learning setting explicitly focuses on non-stationary
or changing environments, often divided into a set of tasks that need to be completed
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weights and biases, which process
some given input and produces an
output. It is loosely based on neurons in
biological brains.
Non-stationary: describing a process
whose state or probability distribution
changes with time.
Sparse representation or gradients:
a sparse vector (or tensor) has many
zero-valued entries. This can be the case
for internal network activations, or for
gradients. For the latter, sparsity implies
that few parameters are changed during
each learning update.
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sequentially. This setting may vary in terms of task transitions (smooth or discrete), task length
and repetition, and task type (such as unsupervised, supervised, or reinforcement learning), or
it may not even have well-defined tasks [9–11]. Compared with curriculum learning [12,13],
the learner does not control the task ordering.

While the problem setting is easy to describe, the characteristics of a desirable solution are not con-
cise and include competing objectives. Consider a hypothetical robot that is expected to perform any
household chore, in any home. The robot cannot be preprogrammed in the factory and then de-
ployed, because of the sheer variety of tasks and homes. Rather, the robot will need to expand its
skill set over time (e.g., learning to wash dishes, then tidying, and finally laundry). Of course, each
task may have nontrivial variations: ‘tidying’ may mean cleaning up a board game or shelving
books, and ‘laundry’ may require sorting socks or ironing shirts. To enable this, the robot will need
to adapt quickly, and also not forget (at least not catastrophically). If there is forgetting, then fast re-
covery is critical. When learning related tasks (e.g., vacuuming, sweeping, and mopping), the robot
should show forward transfer (better performance and faster learning on each subsequent task)
and also show backward transfer (better performance on previous tasks, when revisited) because
of transfer from the current task.Moreover, the robot will have limited access to previous tasks aswell
as limited capacity to store data, increase its model size, or increase processing time.

In summary, a continual learning solution would typically hope to satisfy many desiderata, illus-
trated in Figure 2 and defined in Box 1. Inspecting these desiderata reveals that continual learning
often involves compromise between competing objectives. For instance, maintaining perfect re-
call (by forgetting nothing) in a fixed-capacity model is impossible given an arbitrarily long se-
quence of tasks. This dilemma motivates the alternative objective of fast recovery, which allows
forgetting if previous performance levels can be recovered with a minimal amount of new experi-
ence. Forward, and in particular backward, transfer contrasts with the ability to perfectly recall
previous tasks. Thus, any solution needs to balance competing needs. But what constitutes an
optimal trade-off? How much should the model remember and how much is the model allowed
to grow? Some of the justifications and trade-offs can only be settled if we ground continual learn-
ing into a specific domain. For this reason, studying continual learning in isolation can be challeng-
ing and it remains a priority to identify realistic settings.

The Independent and Identically Distributed Assumption Underpinning Modern
Machine Learning
Neural networks heavily exploit modern technology to parallelize computations and consider
large amounts of data at once; in fact, this ease of scaling has allowed them to become the de
facto approach for speech, vision, and language applications in the last decade. In a typical learn-
ing setting, the goal is to set the parameters of the network in order to minimize some loss func-
tion, such as the error between true and predicted outputs. Gradient-based learning, the most
efficient and widely used paradigm, is an iterative algorithm that, at each iteration, makes a
small change to the parameters in order to reduce the loss (for a more detailed explanation,
see Box 2). The mechanics of this rule results in a tug-of-war dynamic, where each data sample
is trying to pull on each parameter to make it larger or smaller. By averaging gradients, we thus
create a tug-of-war game where the update that is applied to each parameter, since it is either
positive or negative, reveals which data samples won or lost. Combining many tug-of-war up-
dates over many optimization steps allows learning to progress (Figure 3).

As a result, for learning to be successful, data samples must be independent and identically dis-
tributed (IID). To illustrate this, consider trying to learn two different tasks. Though the tasks will not
agree on how to set all parameters, the tug-of-war dynamics will eventually lead to equilibrium.
1030 Trends in Cognitive Sciences, December 2020, Vol. 24, No. 12



Key Figure

Paradigms for Continual Learning
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Figure 1. (A) Independent and identically distributed learning methods are standard for nonsequential, multitask learning. In this regime, tasks are learned simultaneously
to avoid forgetting and instability. (B) Gradient-based approaches preserve parameters based on their importance to previously learned tasks. (C) Modularity-based
methods define hard boundaries to separate task-specific parameters (often accompanied by shared parameters to allow transfer). (D) Memory-based methods write
experience to memory to avoid forgetting. (E) Meta-learning techniques optimize continual learning ‘meta-objectives’ over a large set of task sequences, thereby
learning to continually learn.
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However, if for many consecutive iterations one task is absent, the other task will quickly control all
parameters. Therefore gradient-based learning requires that, in expectation, all tasks are always
present to create the tension needed for learning to progress and eventually converge, hence, the
IID assumption (Figure 1A).
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Figure 2. Illustrations of Different Outcomes in a Sequential, Continual Learning Setting. Each plot (A–E) shows the performance on three tasks which are
evaluated three times (train on task 1, test on 1, 2, and 3; train on task 2, test on 1, 2, and 3; etc.). The plots, which are illustrative, depict the following conditions:
(A) catastrophic forgetting occurs when the performance on previous tasks degrades sharply when learning new tasks; (B) too little plasticity means that only the first
task is learned (e.g., because of over-regularization or lack of capacity). The next three plots show the cumulative effect of positive learning conditions: (C) first we see
the result if no forgetting happens and thus the performance on previous tasks can be maintained during learning; (D) in addition to no forgetting, forward transfer is the
desirable condition where previously learned tasks improve both the performance and learning efficiency on related future tasks; (E) lastly we show what happens if
there is also backward transfer, thus learning a given task improves performance of previous tasks without further training.
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The tug-of-war dynamics are the main mechanism through which gradient-based methods han-
dle credit assignment, which leads to the specialization of parameters and, subsequently, to
learning. Continual learning can be understood as looking for an alternative mechanism to do
credit assignment, one that avoids or modifies the tug-of-war dynamics such that all tasks do
not need to be simultaneously present.

It is worth considering how efficient tug-of-war learning is, in particular, we can ask whether all
tasks are being learned at the same pace. Maybe not surprisingly, the answer is no. Recent
work shows that most examples in a dataset are learned relatively fast and the model needs mul-
tiple repetitions to learn the harder examples [14–16]. However, the tug-of-war dynamics require
that all examples are present, even the easier ones, which wastes computational resources. Re-
cent work has shown empirically that concepts are discovered sequentially, even if they are simul-
taneously present in the data [17], and the behavior is predicted analytically for deep linear models
1032 Trends in Cognitive Sciences, December 2020, Vol. 24, No. 12
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Box 1. Desiderata of Continual Learning

Continual learning methods necessarily involve balancing competing objectives. Mitigating catastrophic forgetting is often
prioritized in research proposals, but actually all of the following desiderata are critical for many real world application
domains:

• Minimal access to previous tasks. The model does not have infinite storage for previous experience and, crucially, it
can not interact with previously seen tasks.

• Minimal increase in model capacity and computation. The approach must be scalable: it cannot add a new model
for each subsequent task.

• Minimizing catastrophic forgetting and interference. Training on new tasks should not significantly reduce perfor-
mance on previously learned tasks (Figure 2A,C).

• Fast adaptation and recovery. The model should be capable of fast adaptation to novel tasks or domain shifts and
of fast recovery when presented with past tasks.

• Maintaining plasticity. The model should be able to keep learning effectively as new tasks are observed (Figure 2B).
• Maximizing forward and backward transfer. Learning a task should improve related tasks, both past and future, in

terms of both learning efficiency and performance (Figure 2D,E).
• Task-agnostic learning. The approach should not rely on known task labels or task boundaries.
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[18]. Therefore, even if tasks are equally complex and presented simultaneously, the model might
still learn them sequentially, thus losing efficiency due to the tug-of-war dynamics. By proposing
alternative ways of assigning credit, continual learning could unleash unprecedented learning ef-
ficiency, even in stationary learning settings.

Gradient-Based Solutions
Motivated by the tug-of-war learning dynamics described previously, one promising approach is to
directly modulate the gradients of different tasks. Not only does this go to the heart of the optimization
problem, it also is well-motivated by studies of synaptic consolidation in biological brains [3].

One approach is to force the gradient to stay aligned with gradients from previously learned tasks
[19,20], eliminating potential interference. Such methods can be beneficial in other settings as
well, for example, in multitask learning, where they have the potential to make learning more effi-
cient in the case of conflicting objectives [21–23].

Other approaches focus on regularizing the loss on new tasks to minimize forgetting of previous
tasks. These regularization-basedmethods estimate the importance of eachmodel parameter for
previous tasks and penalize changes to each parameter proportional to this measure (Figure 1B)
[5,24–28]. For example, elastic weight consolidation [5] relies on the Fisher information matrix to
measure the sensitivity of the parameters with respect to each task and to indicate which param-
eters most need to be preserved to avoid forgetting. The regularization term acts as a proxy for
the gradients of previous tasks, ensuring that the equilibrium required by the tug-of-war dynamics
is maintained. Note that data-agnostic regularization terms, such as drop-out [29], and the train-
ing regime in general [30,31] can have similar effects of altering how credit assignment is done.

Another set of techniques use knowledge distillation [32] as a way to preserve a model’s function-
ality with respect to previous tasks. The learning without forgetting approach [33] encourages the
function of previous task layers to be consistent even when learning a new task. This is achieved
by taking a snapshot of the network (shared parameters and previous task layers) before each
new task and using an additional distillation loss to maintain consistency.

One weakness of gradient-based methods is their reliance on approximations of the objective they
want to attain, which means that they are likely to fail once the model is presented with many
tasks or when the tasks in the sequence are more diverse. However, since these approaches center
Trends in Cognitive Sciences, December 2020, Vol. 24, No. 12 1033



Box 2. Gradient-Based Learning and Tug-of-War Dynamics

Gradient-based algorithms adjust the parameters of a model iteratively, by taking a small step in a descent direction. The
descent direction is given by the gradient, which can be seen as independently determining for each parameter whether
increasing or decreasing its value will reduce the loss. The individual gradients are computed and averaged over a number
of data points, called a batch. Finally,the model is updated by taking a small step in the negative direction of this average
gradient. Figure 3A illustrates this algorithm. The contour lines indicate the value of the loss function corresponding to a
hypothetical task, as a function of the parameters of a model (in this case, two-dimensional, w1 and w2). Starting from a
random initialization, the learning procedure iteratively computes the local gradient of the loss function (which indicates
the direction of greatest change) and changes the parameters by taking a small step in this direction. After many iterations
the procedure converges to a local minimum of the loss function.

Next we can look at what happens during subsequent learning of a second task. Figure 3B illustrates a second loss func-
tion (overlaid on the first for clarity) and the optimization trajectory towards the minimum of task 2. Note that the solution
learned for task 2 has a high loss for task 1: this illustrates catastrophic forgetting, where naive sequential training on a
set of tasks can lead to poor performance on earlier tasks.

If the setting is changed so that both tasks are optimized together, by summing the losses into a ‘multitask’ optimization,
as shown in Figure 3C, we see the ‘tug-of-war’ dynamics that result in stable, but inefficient, steps towards the multitask
solution. In this illustration, the optimization trajectory is shown in black and the individual gradients for each task are shown
in red and blue. The gradient from each task pulls the solution towards its optimum and the result is an equilibrium between
the gradients of different tasks. Of course, a continual learning setting precludes the ability to train on all tasks simulta-
neously, but it may be valuable for a continual learning approach to recreate the careful tug-of-war dynamics by directly
modifying the gradients, or by using memory to balance the current task with data from previously seen tasks.
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on the gradient tug-of-war, they may allow us to better understand the continual learning problem
and credit assignment in general.

Modular Architectures
Modular neural network architectures are a natural and effective solution to the problems of inter-
ference and catastrophic forgetting in continual learning. Modularity offers a compromise be-
tween using a single monolithic network, which is susceptible to forgetting, and using
independent networks for each task, which precludes catastrophic forgetting but also prevents
transfer between tasks (see Figure 1C for illustration of a modular architecture). Modularity is ev-
ident in biological systems as well, where it supports functional specialization of brain regions.

Trivially, catastrophic forgetting can be prevented by using disjoint models for different tasks, but
this implies unconstrained model growth, prevents transfer between tasks, and assumes well-
TrendsTrends inin CognitiveCognitive SciencesSciences

Figure 3. Illustrations of Gradient Descent Optimization for Different Tasks. (A) The trajectory taken by gradient descent optimization when minimizing a loss
corresponding to a single task. (B) The optimization trajectory when subsequently training the same model on a second task. (C) The trajectory taken when using the
total loss from both tasks (black) and the gradients from each individual task at multiple points during optimization (red and blue). See Box 2 for more detailed discussion.
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defined boundaries and known tasks. An ideal compromise is to exploit modular components by
reusing them across tasks and scenarios, with a learning update that only affects a subset of pa-
rameters. This is similar to regularization-based methods, but with a hard constraint on which
neurons or modules are updated for each task.

Modular models often use explicit procedures to increase capacity by adding new parameters as
new tasks are encountered. Recently, a number of adaptive network architectures have emerged
that add new capacity while protecting and reusing existing representations [34,35]; this, how-
ever, introduces new challenges, such as increasing computational requirements throughout
learning. Other solutions judiciously add new capacity only when absolutely needed [36–38], ex-
pandmore aggressively and then prune or compress parts of themodel [39,40], or channel learn-
ing of new tasks to unused parts of a large fixed model [41–45].

Modularity can alsomanifest as a hierarchical structure; this can offer both protection and special-
ization at different levels of abstraction. For instance, a hierarchical control method for a robot
might be modular at a high level (behaviors and goals) as well as a low level (motion primitives),
and thus enable faster learning of sequential tasks. This idea was introduced in earlier work in
continual learning [46] (see also M.B. Ring, PhD thesis, University of Texas at Austin, 1994) and
has shown promise with new research [47,48], but deserves further study at large scale.

Another way to understand modularity is from the perspective of sparsity, which has been ex-
plored extensively from a compression and efficiency angle [49–54] as well as for its applicability
to reinforcement learning and control [55]. From a continual learning perspective [56], both
sparse representations and gradients will result in less interference and forgetting, as there
will either be fewer task-sensitive parameters or fewer effective changes to parameters. Sparsity
can also lead to the emergence of modules without requiring a predefined modular architecture,
which we regard as an important avenue for future research.

The paradigm of modularity, especially when coupled with sparsity constraints and hierarchical
abstraction, offers a pragmatic yet powerful means to solve continual learning. Looking into the
future, human-level artificial intelligence will require the ability to specialize and the ability to com-
pose skills; modular continual learning describes a path towards both.

Memory for Artificial Learning Systems
Gradient-based and modular methods may be more suitable for short-term continual learning
rather than long-term retention. Gradient-based methods cannot prevent forgetting over arbi-
trarily long task sequences and while modular approaches can preserve knowledge over long
timescales, they may reach practical limits in terms of neural network capacity. Consider the chal-
lenging scenario of hiding food in 1000 different locations over the course of months, then locat-
ing each cache correctly after more months have elapsed, a feat that is performed every winter by
birds such as nuthatches, jays, and corvids [57]. Preserving the sequential experience of caching
food by adapting the parameters of a simple neural network would be both challenging and inef-
ficient. A more scalable strategy would be to encode the spatial locations with a dedicated read-
and-write memory.

Taking inspiration frombiology, we consider amore ambitious solution to the continual learning prob-
lem: to implement a neural network memory that can encode, store, and recall knowledge or expe-
rience. An artificial memory is potentially more scalable for long-term recall, but it comes with the
additional challenge of designing, or preferably learning, a framework for encoding, querying, and
writing information, in a way that generalizes across tasks. The simplest implementation of memory
Trends in Cognitive Sciences, December 2020, Vol. 24, No. 12 1035
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for continual learning is often called replay, or rehearsal: the idea is to maintain a history of observa-
tions and then sample learning targets from this buffer (as well as from current observations), thus
preventing catastrophic forgetting though continual rehearsal of previously seen tasks [58,59]
(Figure 1D). In this category are also episodic memory methods, which are distinguished from re-
hearsal methods because they not only use replay memory for training, but also for inference
[60–62]. Rehearsal and episodic memory are simple and remarkably effective at reducing forgetting,
but they do not scale well.

Rather than storing all observations, one can maintain a set of anchors, exemplars, or memory
vectors that represent the key features of each task. Not only is this style of memorymore efficient
and scalable, but it enables compression and high-level transfer across multiple tasks. Of course,
the critical challenge in a sparse memory setting becomes one of selecting which experiences to
store and this has been the focus of a number of recent works [63–67].

From a biological perspective one might note that although replay has been observed in rodents
and humans [68], maintaining any number of pristine observations or exemplars is unrealistic. In
generative memory methods, no samples are stored. Rather, generative models are trained and
then used to generate rehearsal data as needed [69–72].

Finally, we consider methods with learned read and write operations. One such model, the differ-
entiable neural computer (DNC) [73], uses end-to-end gradient-based learning to simultaneously
train separate neural networks to encode observations, read from the memory, and write to the
memory. For continual learning problem domains, a DNC could hypothetically learn how to se-
lect, encode, and compress knowledge for efficient storage and retrieve it for maximum recall
and forward transfer. The generality of the approach presents a dilemma, however, since training
this sort of architecture is extremely difficult even in stationary environments or from IID datasets.
Moreover, the neural network components (for reading, writing, etc.) may themselves suffer from
catastrophic forgetting during training.

Regardless of the challenges, memory frameworks are clearly valuable for continual learning and
the most general, end-to-end models have the potential to open up new frontiers in the field, but
only if we can overcome the challenges of training such systems.

Meta-Learning: Discovering Inductive Biases for Continual Learning
All of the solutions discussed thus far prescribe hand-engineered mechanisms or architectures,
inductive biases, for continual learning. Each inductive bias strikes a different trade-off between
desiderata, such as good knowledge retention versus positive forward transfer in a memory-
based approach. It is worth considering whether better trade-offs can be achieved by learning
a solution from data rather than relying on human ingenuity to design it. Historically, a number
of ‘meta-learning’ or ‘learning-to-learn’ approaches have demonstrated that solutions can be im-
proved by automatically learning inductive biases (such as architecture, data, and learning pa-
rameters) that would otherwise need to be hand-designed (Figure 1E) [74,75].

Intuitively, meta-learning approaches can be described as comprising two timescales of optimi-
zation: an ‘inner loop’ that optimizes on specific tasks and an ‘outer loop’ that optimizes perfor-
mance over multiple inner loops (Box 3). Relevant to continual learning, outer loops can be
defined that optimize for performance in non-stationary settings [76–78]. For example, online-
aware meta-learning (OML) [79] uses inner-loops that learn on correlated sequences of inputs.
Although this violates the IID assumption and could result in catastrophic forgetting, the outer-
loop optimizes the input representation to reduce forgetting and improve generalization during
1036 Trends in Cognitive Sciences, December 2020, Vol. 24, No. 12



Outstanding Questions
Can we find an alternative solution to
credit assignment that preserves the
ability of gradient-based approaches
to learn complex tasks well while
avoiding the tug-of-war dynamic and
improving the efficiency of learning?

What are the right trade-offs between
the different desiderata and can we
quantify the trade-offs of biological
systems? If these are domain specific,
what are all the different domains or
types of continual learning problems
that we should explore?

How do we balance the need to
remember versus the ability to quickly
relearn certain facts or skills? When is
perfect recall necessary?

If the modular structure of a continual
learning system has to be designed
(rather than learned), what should it
be? How might it evolve over time?

How can we learn efficiently how to
retrieve or store memories to address
continual learning? How might we ensure
that these mechanisms themselves are
robust to change in data distribution?
And, particularly when dealing with
generative models that learn slowly, how
do we ensure that memories are formed
fast enough? How do we compress and
encode memories?

Can we learn the inductive biases
needed to solve continual learning? Can
we do this at scale, efficiently? Is
constructing the right data and learning
environment to learn the inductive
biases as hard as solving the original
problem? Would the learned solution be
robust or interpretable?

Box 3. Understanding Meta-Learning

Meta-learning algorithms can be understood in terms of adaptation at two different time scales. Intervals of fine-grained
task learning, or ‘inner-loops’, provide the necessary information for an ‘outer-loop’ of coarse-grained meta-learning.
The aim of the outer-loop is to improve adaptation in future inner-loops. Crucially, different data are used during training
and testing to ensure generalization at both time scales.

Meta-learning algorithms can be differentiated by their definition or implementation of the inner loop, which allows adap-
tation to specific tasks, or the outer loop, which optimizes across a number of inner loops. In [86,87] both loops use gra-
dient descent, while inner-loops can also be nearest-neighbor matching [88,89], recurrent neural representations
[8,90,91], probabilistic inference [82,92], or mixed approaches [93–96]. In all these works, the outer-loop aims to improve
the speed of inner-loop adaptation to a new task.
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the non-stationary inner-loops. Interestingly, minimizing the OML objective leads to sparse input
representations. Furthermore, an efficient partitioning of representation space arises, reminiscent
of modularity. Exemplifying the value of meta-learning, neither principle is explicitly enforced, yet
they are discovered and exploited for effective continual learning.

From another perspective, every sequential task can be considered as a meta-learning problem
[80–82,97]. As pointed out in [83], this perspective can be insightful for continual learning. In the
IID setting there is an underlying assumption that a solution exists that can solve all tasks simul-
taneously. However, note that in natural settings there are many instances of tasks that are incon-
sistent or contradictory (changing foraging behavior depending on the season, driving on the left
or the right side of the street). Instead, the meta-learning perspective moves the emphasis to fast
adaptation and fast recovery rather than perfect recall. However this trade-off is not always ap-
propriate and depends on the tasks being solved. There are behaviors that one cannot afford
to forget for reasons of safety or fairness, or in settings where fast relearning is impossible, for in-
stance, because of the rarity of the experience (touching a hot stove is an example of an experi-
ence that should not need refreshing!).

While the prospect of meta-learning new solutions for continual learning is exciting, this has
proven to be computationally demanding as well as requiring careful design of the task distribu-
tion [84,85]. That is, while meta-learning can remove some of the hand-engineering required in
machine learning, this is displaced by hand-engineering the tasks themselves.

Looking past these hurdles, meta-learning could steer continual learning research beyond the
goal of knowledge retention with perfect immediate recall, towards a more realistic notion of flex-
ible, data-efficient learning in non-stationary domains.

Concluding Remarks and Future Directions
Machine learning researchers often point to the remarkable ability of humans to learn quickly and
generalize robustly (e.g., inferring a pattern from a few examples). However, we do not often re-
mark on the ability of humans to learn continually over a lifetime of education and experience, al-
though it is this facility that enables human achievements of science, art, and industry. This article
attempts not only to highlight the importance of continual learning, but also to expose the limita-
tions of modern neural networks in this regard, in particular the credit assignment problem that
results in an inefficient, gradient-based ‘tug-of-war’.

Surveying the solution space, we have identified learning paradigms that have the potential to be truly
impactful if scaled to more ambitious domains. Not surprisingly, these paradigms all have strong
parallels in neuroscience and biological systems. Gradient-based approaches directly modify the op-
timization of neural networks and have been shown to reduce catastrophic forgetting. Modular
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architectures offer pragmatic solutions to interference and catastrophic forgetting, while enabling for-
ward transfer through hierarchical recomposition of skills and knowledge. End-to-end memory
models could be a scalable solution for long timescale learning, and meta-learning approaches
could surpass hand-designed algorithms and architectures altogether.

With such potential for positive impact, it is important to also acknowledge the risks involved in
deploying machine learning models that continually change, since any initial assessment of safe
and expected behavior cannot be readily guaranteed in perpetuity. Continual learning solutions,
however, could mitigate these risks through improving the long-term reliability of the learning al-
gorithm and through developing architectures that ensure that certain rules or boundaries are
never violated.
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