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Abstract: Methods developed for automatic sleep stage
detection make use of large amounts of data in the form of
polysomnographic (PSG) recordings to build predictive
models. In this study, we investigate the effect of several
dimensionality reduction techniques, i.e., principal
component analysis (PCA), factor analysis (FA), and
autoencoders (AE) on common classifiers, e.g., random
forests (RF), multilayer perceptron (MLP), long-short term
memory (LSTM) networks, for automated sleep stage
detection. Experimental testing is carried out on the MGH
Dataset provided in the “You Snooze, You Win: The
PhysioNet/Computing in Cardiology Challenge 2018”. The
signals used as input are the six available (EEG) elec-
toencephalographic channels and combinations with the
other PSG signals provided: ECG – electrocardiogram, EMG
– electromyogram, respiration based signals – respiratory
efforts and airflow. We observe that a similar or improved
accuracy is obtained in most cases when using all dimen-
sionality reduction techniques, which is a promising result
as it allows to reduce the computational load while main-
taining performance and in some cases also improves the
accuracy of automated sleep stage detection. In our study,
using autoencoders for dimensionality reduction main-
tains the performance of the model, while using PCA and
FA the accuracy of the models is in most cases improved.

keywords: autoencoders; EEG; factor analysis; LSTM;MLP;
principal component analysis; random forests; sleep
staging.

Introduction

When investigating sleep related problems, health care pro-
fessionals make use of polysomnographic (PSG) recordings to
monitor andanalyze thepatientsduring sleep.PSGstudies can
span several hours and may include signals such as (EEG)
electroencephalogram, (ECG) electrocardiogram, (EMG) elec-
tromiogram, respiration related signals, etc.

For identifying sleep patterns and placing a diag-
nostic, clinicians usually analyze all the recorded signals
manually to classify the different stages of sleep. The
annotation process is cumbersome and can take a signifi-
cant amount of time since signals should be annotated in
short time windows. According to the American Academy
of Sleep Medicine (AASM) Guidelines, sleep stages should
be labeled on 30 s epochs [1]. Automatic sleep stage clas-
sification algorithms can ease the burden of manually
annotating each epoch.

The applications of automatic sleep stage detection

algorithms mainly help physicians in providing a faster

and more accurate diagnosis by facilitating the annota-

tion process. A typical sleep study does not only imply a

significant amount of work for the annotator, but it also

brings a significant discomfort to the patient. The patient

normally conducts a sleep study in a sleep clinic, while

connected to the PSG recording equipment. This brings a

certain degree of discomfort and impacts the sleep qual-

ity. With the advent of wearable technologies and remote

health monitoring, the process of recording sleep studies

can be simplified and improved. The patient could

potentially record a sleep study at home, with a more user

friendly equipment. Automatic sleep scoring algorithms

can also be of potential help in this case. Based on the

output of the algorithms, sleep disorders can more easily

be diagnosed and alarms can be triggered in case of severe

respiratory or cardiac problems.
By using a smaller set of signals, the equipment that

needs to be applied to the patient is less bothersome. If by
using only EEG signals, a sufficient accuracy is obtained
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from the automatic sleep scoring algorithm, all other signal
types would not be required in a remote recording.

Automatic sleep staging algorithms combined with
wearable technologies can open the possibility of wide
population screening. Some sleep disorders can be under-
lying symptoms of bigger health problem or a prodromal
symptom of serious diseases. For instance, some motor
types of neurodegenerative diseases present rapid eye
movement (REM) sleep behavior disorder (lack of atonia
during the REM sleep stage) years prior to the actual onset of
the motor symptoms [2]. Its earlier detection can help in
providing adequate treatment sooner.

Many methods have been proposed for automatic
sleep stage classification [3, 4]. A more detailed view is
provided in section 4. A typical algorithm setup extracts
features from recorded PSG signals and uses them as
input for a classification algorithm. The obtained model
can then predict sleep stage labels on unseen data. One of
the factors contributing to the performance of themodel is
the information used for training. The type of input data
and its variety has a direct impact on the patterns that the
model can recognize. The biomedical signals used to
characterize sleep patterns show a large variation in
characteristics from person to person and from healthy
individuals to those suffering from diverse pathologies.
Training on a larger data set might capture more of the
signal variations and provide a better prediction power.
However using large amounts of data can become
computationally expensive.

Dimensionality reduction techniques are often used
when dealing with large data sets, to ease the computa-
tional requirements while maintaining a good perfor-
mance. They can also be useful in representing data into
formats that enhance the properties of each class, which in
this case is represented by sleep stages.

In this paper, our contributions are focusing on
dimensionality reduction for preprocessed PSG data,
namely: (i) use of a simple autoencoder network as a
dimensionality reduction technique, and (ii) study the ef-
fects of different dimensionality reduction methods (FA,
PCA, AE) on different types of classifier models. By using
less computational load and less memory, more informa-
tion can be added to the model, potentially broadening its
applicability as more variability is included.

The paper is organized as follows. The next section
provides a brief overview of previous work on automatic
sleep stage detection and dimensionality reduction. The
sectionMaterials andMethods presents different aspects of
the methods used: raw signals used and data set pre-
processing, extracted features, dimensionality reduction
techniques and classifiers. The section Results details the

experimental results while the last section concludes the
paper.

Previous work

The topic of automatic sleep stage detection is abundantly
present in scientific literature. Many algorithm variations
are available based on the type of input signals andmethod
of classification used. Here we focus on studies that use
EEG data as input. Methods for automatic sleep scoring can
make use of single channel EEG recordings [5, 6] or of
multiple EEG channels [7]. Classification models are in
most cases built on extracted features. Features are
extracted from the time domain [8–10], frequency domain
[7, 11], time-frequency domain [12, 13] or a different repre-
sentation of the data [14]. These types of features are
generally used as input for classic algorithms such a sup-
port vector machines [13], k-nearest neighbor [14], random
forests (RF) [6] etc.

In recent years, neural networks have also been
extensively used in the problem of automatic sleep stage
classification. Different architectures were created
including for instance convolutional [15] or long-short term
memory (LSTM) [8] layers or well known deep neural
network architectures such as VGGNet [16]. Some of the
neural network methods use extracted features as input,
while some are able to use raw data as input represented
either in time [5] or in the form of spectrograms [16, 17].
Some neural network architectures explore the properties
of convolutional layers to extract frequency features from
the signal prior to the output classification layers [15, 18].

Regardless of the type of input data used for the
training of the sleep scoring model, the data amounts can
be large as signals are annotated in 30 s epochs and several
hours of recordings are collected during a sleep study. The
high dimensionality of the data can become problematic
due to memory constraints and the requirements for
computational power.

Different methods have been proposed in literature to
reduce the size of large data sets and represent information
in a more convenient way for further processing [14, 19].
For instance, data can be transformed in different di-
mensions that would better capture data variability using
FA or PCA [19–21]. Fan et al. [21] uses multi-scale entropy
combined with PCA to extract features and automatically
detect sleep stages from the MIT-BIH database. The final
accuracy reached 87.9%.

AE can compress the input data to different degrees.
When applied to automatic sleep stage detection, AE net-
works are mostly used for classification purposes [5, 22].
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Tsinalis et al. [5] uses a single frontal EEG channel from the
sleep EDF dataset to classify sleep stages. Features are
extracted using thewavelet transform and a stacked sparse
autoencoder with 20 layers is used for classification. The
highest obtained mean accuracy is of 88%. Najdi et al. [22]
uses the ISRUC data set to automatically classify sleep
stages using a feature based model. Features are extracted
fromEEG, electrooculogramandEMGdata and are selected
using a discriminative feature selection algorithm. These
are fed into a stacked sparse autoencoder resulting in a
classification accuracy of 82.2%. Feature extraction or
dimensionality reduction can also be obtained using
autoencoders. Prabhudesai et al. [23] used a convolutional
autoencoder to extract spectral features representative of
the different EEG power bands. These features were com-
bined with a linear discriminant analysis classifier to
obtain the sleep stages. Statistically better results were
obtained when using autoencoders for feature extraction.

Feature selection can also be considered a technique of
reducing the amount of information while maintaining the
level of performance. The author in [24] compares various
feature ranking algorithms and explores the use of
autoencoders for further feature transformation. Different
classifiers are used for EEG based sleep scoring. By using
feature ranking in the classification, the obtained mean
accuracy was 75%. When adding autoencoders for feature
transformation, the overall classification reached 82.2%.

Although dimensionality reduction techniques have
been used previously in automatic sleep stage detection, in
this study we aim to compare several techniques of data
representation and compression while observing their ef-
fects on the results obtained with different types of clas-
sification algorithms such as RF, multilayer perceptron
(MLP) and LSTM.

Materials and methods

Our approach for creating an automated sleep scoring model was to
extract features from raw sensor data (EEG, ECG, EMG and respiration
based signals recorded during sleep) and use these features as input to
various classifiers. Dimensionality reduction techniques were applied
after feature extraction as presented in Figure 1. The obtained repre-
sentation of the data is used for training the classifiers. The model

obtained is afterwards tested. Performance evaluation was conducted
for each model in a cross-validation scenario.

Data set description

In this study, we used the PSG data set provided by Massachussets
General Hospital on Physionet as part of the challenge ‘You Snooze,
You Win: The PhysioNet/Computing in Cardiology Challenge 2018’
[25, 26]. The data set was chosen due to the abundance of annotated
data according to the AASM guideline. The available training set
contains PSG data from 994 subjects. The AASM guideline defines
five stages of sleep: Wakefulness (W), N1 (non-REM light sleep), N2
(non-REM light sleep), N3 (non-REM deep sleep) and REM [1]. A label
is placed every 30 s of recording. This results in a total of approxi-
mately 2 × 106 annotated epochs that can be used as input for
classification.

Each PSG recording contains six EEG channels (F3M2, F4M1,
C3M2, C4M1, O1M2, O2M1), a submentalis EMG, ECG and signals
monitoring respiratory effort from the chest, abdomen and an airflow
signal.

Raw signals and preprocessing

A PSG study contains multiple physiological recordings which can
also be used for the automatic classification of sleep stages. Using
only EEG data can simplify the physical setup required for recording.
In our study, we have used two signal combinations: six EEG chan-
nels, six EEG channels combined with EMC, ECG and respiratory
based signals [25]. The latter combination was chosen as it includes
information from all recorded signals, thus increasing further the
size of the data set, while adding more aspects that can improve
classification.

Sleep stages are distributed unequally throughout sleep. Non-
REM and REM sleep have a cyclic structure. Non-REM sleep is prev-
alent throughout the night taking up to 75–80% of the total sleep
time, whereas REM sleep represents the remaining 20–25% [27]. N1
sleep generally occurs right after wakefulness and represents a small
percent out of the total sleep time. N2 represents the majority of
sleeping time, while deep sleep from the N3 stage is generally around
10% of the total sleep time [27]. Therefore PSG data sets are unbal-
anced, as more instances of one class are available for training the
classifier than others. To provide the classifiers with an equal amount
of data from each sleep stage class, we have preprocessed the dis-
tribution of classes in the data set. We have selected the smallest
available class and randomly sampled the other classes such that all
sleep stages will be equally represented in the input seen by the

Figure 1: Overview of the method of
obtaining the automatic sleep stage model
from polysomnographic recordings.
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classifiers. This is also the case in the data set we have chosen for our
experiments.

Extracted features

Biomedical signals are typically non-stationary and so the features
used to characterize them are diverse, from both time and frequency
domains. Awindowof 30 swas selected for feature extraction tomatch
the annotated sleep stages. An overview of all the extracted features is
presented in Table 1. Each stage of sleep is represented differently by
the characteristics of the various PSG signals. All of the signals show

changes corresponding to the physiological states from the different
cycles of sleep.

EEG: Information in the EEG signal is encoded both in the amplitude
fluctuations from the time domain as well as in the frequency changes
of the signal. Most often the frequency content of the EEG is used as an
indication of the state of the subject. In this work, we considered four
EEG frequencybands:Delta–between0.5 and 4Hz,Theta–between4
and 8 Hz, Alpha – between 8 and 12 Hz, Sigma – between 12 and 20 Hz.
The five stages of sleep defined by the AASM guidelines [1], comprise
different EEG rhythms. The wakefulness state mostly consists of alpha

Table: Extracted features in time and frequency domain fromeach electoencephalographic (EEG), electrocardiogram (ECG), electromyogram
(EMG) and Respiratory-based signals [, ]. All features are extracted on  s windows. The last column represents the total number (#) of
features extracted from one epoch of one signal.

Name Description Name Description #

EEG Time meanA Mean amplitude maxA Maximum amplitude 

skewS Skewness kurtosisS Kurtosis
stdS Standard deviation

Frequency meanP Mean spectrum value in EEG band maxP Maximum spectrum value in EEG band
minP Minimum spectrum value in EEG band stdF Standard deviation of the EEG band

spectrum
kurtosisF Kurtosis of the EEG band spectrum Delta/theta Ratio between mean spectrum power in

delta and theta band
Delta/theta Ratio between mean spectrum power in

delta and theta band
Theta/alpha Ratio between mean spectrum power in

theta and alpha band
Delta/alpha Ratio between mean spectrum power in

delta and alpha band
ECG Time RR interval Mean interval betweendetectedR peaks of

the ECG epoch
BPM Beats per minute 

RMSSD Root mean square of HRV signal SDNN Standard deviation of HRV signal
minHRV Minimum of HRV signal maxHRV Maximum of HRV signal
skewHRV Skewness of HRV signal kurtosisHRV Kurtosis of HRV signal
entropyHRV Spectral entropy of HRV signal

Frequency TF Total frequency –mean power spectrum of
HRV <. Hz

VLF Very low frequencies - mean power spec-
trum of HRV <. Hz

LF Low frequencies - mean power spectrumof
HRV between . and . Hz

HF High frequencies - mean power spectrum
of HRV between . and . Hz

LFHF Ratio between low and high frequencies
EMG Time meanE Mean amplitude minE Minimum amplitude 

maxE Maximum amplitude skewE Skewness
kurtosisE Kurtosis varianceE Variance
rmsE Root mean square of the EMG epoch entropyE Spectral entropy of the EMG epoch

Freq MaxFE Frequency at which the power spectrum is
maximum in the EMG epoch

maxPSDE Maximum of the power spectrum in the
EMG epoch

skewE Skewness
Resp Time meanR Mean amplitude skewR Skewness 

kurtosisR Kurtosis varianceR Variance
stdR Standard deviation nPeaks Number of peaks detected in an epoch
meanNPeaks Mean distance between two consecutive

peaks in an epoch
stdNPeaks Standard deviation of the distance be-

tween two consecutive peaks in an epoch
skewNPeaks Skewness of the distance between two

consecutive peaks in an epoch
Freq MaxFR Frequency at which the power spectrum is

maximum
maxPSDR Maximum of the power spectrum in the

epoch
meanPSDR Mean of the power spectrum in the epoch
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and sigma EEG oscillations. The N1 state has predominant theta ac-
tivity combined with slow sigma, while the N2 state has predominant
theta activity with minimal alpha waves. The N3 sleep stage, also
known as deep sleep, contains mostly delta waves. REM activity is
characterized mostly by the presence of theta activity on the EEG
signals [27].

Figures 2, 3 show two EEG epochs in time for the wake and N3
stage respectively. Figures 4, 5 present the frequency domain repre-
sentations of the same EEG epochs. Differences between the two EEG
epochs can be observed both in the time and frequency domain. As it
can be seen fromFigure 2 and Figure 4, strong alphawaves are present

on the EEG trace with a characteristic frequency of around 11–12 Hz.
When looking at deep sleep (Figure 3), the amplitude in time of the
signal is significantly increased while the rhythm is decreased. This
can also be seen in the frequency domain representation, where alpha
waves are no longer visible and the spectrum is dominated by strong
low frequency components (delta waves). Both time and frequency
domains can be used to characterize sleep stages from EEG signals.

From each of the six EEG channels provided in the selected
database, 5 time domain features and 23 frequency domain features
were extracted [7, 11]. The frequency domain features characterizing
in-band power (meanP, maxP, minP, stdP, kurtosisF — see Table 1)

Figure 3: Selected epoch from the EEG F3-M2 channel from subject tr03-0005 of the database annotated as N3. The highlighted portion
represents the annotated section.

Figure 2: Selected epoch from the EEG F3-M2 channel from subject tr03-0005 of the database annotated as Wake. The highlighted portion
represents the annotated section.

Figure 4: Power spectral density estimate of the EEG epoch
represented in Figure 2.

Figure 5: Power spectral density estimate of the EEG epoch
represented in Figure 3.
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were extracted for each of the defined EEG frequency bands. Therefore
a total of 28 features were extracted from each EEG channel.

ECG: The most relevant information regarding sleep from the ECG
signal includes characteristics of heart rate (HR) and heart rate vari-
ability (HRV). HR is significantly lower during deep sleep and the other
stages of non-REM sleep when compared to the wakefulness state.
During REM sleep, the HR increases slightly but does not reach the level
from wakefulness [28]. To capture these fluctuations, features were
extracted fromboth the time and frequency domain from theHRandHRV
signals constructed from the detected ECG R peaks [29, 30]. The extracted
features are detailed in Table 1. A total of 14 features were used.

EMG: Muscle tone changes throughout the different stages of sleep.
These changes are captured with the help of EMG measurements.
During non-REM sleep, themuscle tone and therefore the EMG activity
is similar to that found in wakefulness. During REM sleep, themuscles
experience atonia in order to no enact dreams. This can be seen on the
EMG signal, which presents significantly less activity than in other
sleep phases. A total of 11 time and frequency domain features were
extracted from the provided EMG signal as detailed in Table 1.

Respiration: During the different sleep cycles, respiration has a
similar pattern as heart rate (HR). During non-REM sleep, the res-
piratory activity is lower than compared to wakefulness. In REM
sleep, the respiratory activity increases but does not reach the level
of the activity from wakefulness [27]. These fluctuations are moni-
tored in the chosen data set using three signals – obtained from chest
and abdomen belts measuring respiratory efforts and a sensor
monitoring airflow. Both time and frequency domain features are
extracted from each individual signal. The respiratory signals show
peaks and valleys corresponding to the inspiration and expiration
effort. Theses peaks are also detected and features are extracted from
the differences between consecutive peaks [31]. All features are
detailed in Table 1. A total of 12 features are obtained for each of the
three respiratory signals, so a total of 36 features characterize the
respiration effort during sleep.

In our experiments, when using all six EEG channels, a total of 168
features per epoch are used as input to the classifier.When combining the
EEG channels with ECG, EMG and Respiration based features, the input
increases to 205 features per epoch. Taking the size of the data set into
consideration (see Section 4), the amount of input instances to the clas-
sifier is computationally expensive. In some cases, additional features do
not improve performance but actually reduce it [32]. Selecting features or
representing data sets in a more suitable manner for classification can
improve performance, while reducing computational costs. Dimension-
ality reduction techniques are applied for the two feature sets.

Dimensionality reduction

The aim of our dimensionality reduction efforts was to reduce the
computational power and memory requirements, while attempting to
improve performance though different data representations. When
experimentingwith different techniques, we have kept the output data
sizes constant for comparison. Experiments were performed with a
total number of features being reduced to 3, 5, 30, and 50 components
only. These components were then fed to the classifier.

Principal component analysis (PCA): PCA is a linear transformation
thatmaps the input data into a lower dimensionwhilemaintaining the
variance of the original data set [19]. PCA finds a linear mapping be-
tween the covariance matrix of the data which results in a number of
principal eigenvectors. The number of eigenvectors represents a lower
dimensionality of the input information and so allows for a dimen-
sionality reduction of the original dataset while maintaining relevant
information. In our experiments, we used an incremental PCA
implementation [34] with a batch size of 64. The number of eigen-
vectors was changed to 3, 5, 30, and 50.

Factor analysis (FA): FA analyzes the correlations between different
variables by creating a set of common factors or latent variables [20].
FA assumes that the initial information can be grouped by the corre-
lation between variables. The variables within one group are highly
correlated with each other but little correlated to variables form other
groups. Thus one group can represent a factor. In our case, the number
of factors was changed to 3, 5, 30, and 50.

Autoencoders (AE):Artificial neural networks aremadeupof networks of
neurons organized in layers. Each one of the neurons has an activation
function,whichcombinedwith the inputprovided, createsanoutput. This
is fed to connected neurons from the next layer. The connections between
neurons are weighted and these determine if the neuron is excitatory
(passes information) or inhibatory (stops information). [35].

AE are a type of neural network containing a minimum of three
layers: input, hidden and output layers. As the size of the output layer is
forced to be the same size as the input layer, the hidden layer encodes
the information provided as input [36]. If the hidden layer has fewer
neurons than the input layer, the result of the encoding process can be
used as a compression of the initial data set thus reducing its dimension
while maintaining relevant information. In our implementation, we
made use of a sparse autoencoder (a single hidden layer) and varied the
number of neurons of the hidden layer between 3, 5, 30, and 50. These
components were extracted from the model and used as a reduced
representation of the original set in the classification process.

Our implementation is illustrated in Figure 6. All implemented
layers are fully connected. In fully connectednetworks, all neurons from
one layer are connected to all neurons from the next layer. For the
compilation of the model, we used an Ada Delta optimizer with a mean
square error (MSE) loss function. The optimizer is used to tweak the
weights of the neurons, according to the value of the loss function.
Model fitting was performed using a batch size of 32 to avoid overfitting
andwithin 20 epochs. These parameters were experimentally optimized
from the convergence of the model using the MSE loss function.

Figure 6: Dimensionality reduction with autoencoders.
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Classification

Three representative classifiers have been selected for the evaluation.
A decision tree based network – RF and two neural networks – MLP
and LSTM Network.

Random forest (RF): Is an ensemble learning method that combines
the output of several decision trees [37]. A classificationdecision tree is
a type of predictive algorithm that uses descriptors of a problem to
branch out in different directions creating new nodes. After several
nodes have been created, a final decision point is reached. The final
node of a tree is called a leaf. In our case, the descriptors are the
features extracted from the data, while the leaves are the final sleep
stage classes. Ensemble learning techniques combine the output of
several predictive algorithms to provide a decision. In RF, decision
trees are built by selecting a random sample of the input. The final deci-
sion is obtained by averaging the output class of all decision trees used. In
our experiments, 10 decision trees were used. The minimum number of
samples (descriptors) required for a decision to bemade for each leaf was
ofminimum 10. RF has inherent feature selection implemented. Based on
the decision trees created, the relevance of each feature can be deter-
mined. We used this information to analyze the most relevant features
proposed which can also be used for feature selection.

Multilayer Perceptron (MLP): MLP is a type of feed forward neural
network that has at least three layers: input layer, hidden layer(s) and
output layer. In a feed forward network, the information flows only in
one direction from input to output. The output layer represents the
probability of predicting each type of class.

In our case, the input layer will contain the features while the
output layers the predicted sleep stage. The number of hidden layers
can be increased, creating a deep network. Each hidden layer is made
up of neurons called perceptrons [38]. Variations on the number of
hidden layers and layer sizes were performed. Best results were ob-
tainedwhen using three hidden layers of 500 perceptrons per layer. In
our network architecture, all layers were fully connected and neurons
had a tanh() activation function.While compiling themodel, anAdam
optimizer was used with a binary cross-entropy loss function.

Long-short term memory (LSTM): Is a type of recurrent neural network
that contains memory units and gates which makes it possible to selec-
tively use prior temporal information for current state predictions [39, 40].
These types of networks are useful when dealing with time varying in-
formation, suchasbiomedical signals. For our implementation,weuseda
simple architecture containing a single LSTM layer with 128 units. The
output layer containedfiveneurons representative of thefive sleep stages.
Compilation of themodelwasperformed similarly to theMLPnetwork: an
Adam optimizer was used with a binary crossentropy loss function.

Evaluation

Following the best practice from literature [5, 11], each generated
model was evaluated in a 10-fold cross-validation. The data set was
split into 10 parts, nine were used for training and the remaining one
was used for testing. When selecting the data for creating the training and
testing folds, a stratified approach was used. Each fold preserved the

percentages of the elements from each class. The performance was
compared using the mean accuracy and F1-score over all sleep stage
classes:

Accuracy = TP + TN
TP + TN + FP + FN

(1)

Precision = TP
TP + FP

(2)

Recall = TP
TP + FN

(3)

F1score = 2 ∗ Recall ∗ Precision
Recall + Precision

(4)

where TP – true positive, TN – true negative, FP – false positive, FN –
false negative.

Cohen’s Kappa coefficient (Kappa) was used to quantify the
agreement between predicted classes and the provided annotations.
This coefficient is generally used for evaluation inter-rater agreements
and is defined as:

Kappa = Accuracy − Pe

1 − Pe
(5)

where Pe – probability of detection of each sleep stage determined in
this case from the predicted values and the provided annotations.

Results

Effects of dimensionality reduction

Figure 7 presents an overview of the results of the vari-
ations performed for the different dimensionality reduc-
tion techniques when using six EEG channels. When
applying no dimensionality reduction, the baseline dif-
ference between the three classifiers can be observed. For
the automated sleep stage scoring using RF, MLP and
LSTM an accuracy of 86, 67 and 71% was obtained
respectively.

Results obtained from the six EEG channel input and
the six EEG channels combined with the other signals
were compared. The summary is available in Table 2. For
the RF classifier, when using more signals and no
dimensionality reduction, the performance increased to
95% accuracy. However, this is no longer valid when
looking at the results obtained with MLP and LSTM. The
additional features contribute negatively to the perfor-
mance of these models.

Feature importance

For studying which features are more relevant to the
problem of automatic sleep stage scoring, we have made
use of the inherent properties of RF to assign a feature
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relevance (see Section 4). Since we used a variation of
k-fold cross-validation (see Section 4), the most relevant
feature for each fold was considered when proposing a set
of selected features. When looking at the six EEG chan-
nels, the most relevant information was encoded in the
frequency features of specific channels: the minimum
power in the delta band of channel F3M2, C3M2 and O2M1
and in the ration between the theta and alpha band of
channels C3M2, O1M2 and O2M1. When combining the
EEG channels with the ECG, EMG and Respiration chan-
nels, the relevant EEG features are mixed with several
respiration based features: the number of peaks detected
from the signal obtained from the chest belt alongwith the

mean, standard deviation and skew of the distance be-
tween consecutive peaks.

Discussion

For all dimensionality reduction techniques, FA, PCA, and
AE, a larger number of output components, 30 or 50,
resulted in a better model performance than when three or
five outputs were used. No significant reduction in per-
formance was observed for any technique. When using
factor analysis or principal component analysis different
projections of the data are obtained.

Table : Comparison of performance for Automated Sleep Stage Scoring using different dimensionality reduction techniques. RF – Random
Forest, MLP – Multilayer Perceptron, LSTM – Long Short Term Memory, FA – Factor Analysis, PCA – Principal Component Analysis, AE –
Autoencoders, Acc – Accuracy, F – F-score, Kappa – Cohen’s Kappa coefficient, EEGs – the six EEG channels used as input, EEGs + Sig – the
six EEG channels used together with ECG, EMG and Respiration signals as input. All results are expressed in percentages.

No dim reduction FA PCA AE

[%] Acc F Kappa Acc F Kappa Acc F Kappa Acc F Kappa

RF EEGs            

EEGs + Sig            

MLP EEGs            

EEGs + Sig            

LSTM EEGs            

EEGs + Sig            

Figure 7: Effects of different dimensionality reduction techniques for six EEG channels (EEGs) on the accuracy of the models created using
three classifiers. The first column is the results when using no dimensionality reduction. The second, third and fourth columns are the results
when using FA, PCA and AE as dimensionality reduction. Results for RF, multilayer perceptron (MLP) and LSTM classifiers are presented in the
first, second and third row respectively.
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Figure 8 presents the values of meanAlpha plotted
against the values of meanTheta obtained from the F3M2
EEG channel from all epochs in the pre-processed dataset.
As alpha waves are present mostly during wakefulness,
while theta waves appear during REM and light sleep,
the feature values representing their mean spectral power
should present a clear differentiation between at least
wakefulness and stages N1, N2, and REM. Although
there are some limitations in describing complex EEG fre-
quency patterns only by the mean power spectrum of two
defined bands, some differences between sleep stages are

expected. From Figure 8, no clear differentiation can be
observed.

Figures 9–11 present two of the components available
after the transformation of the dataset through the use of
PCA, FA, and the Autoencoder respectively. The pre-
processed dataset was passed through the transformations
which resulted in an output of 50 Components. Out of the
new data representation, two components were chosen at
random for the graphical representation. Theywere plotted
for all epochs in the data set. As expected, the data is
reshaped and has a lower dimension. For all data trans-
formations, the visual separation between sleep stage
classes seems clearer at visual inspection. Some compo-
nents enhance the separation between specific stages of
sleep. For instance, in the representation from Figure 9,
stages 0 and 4 corresponding to wakefulness and REM
sleep, are better separated. In Figure 10, classes 0, 2, and 4
corresponding to wakefulness, N2 and REM are better
separated. When choosing other components for graphical
visualization, different sleep stages can be better differ-
entiated. In the case of dimensionality reduction through
autoencoders, a less clear separation between the different
stages of sleep can be observed in Figure 11. This is also
reflected in the performance enhancements of the various
classification models.

In some cases, a clearer separation between classes
through features, results in an increase in performance.
For instance, when applying factor analysis on the input to
the MLP classifier, an increase of almost 20% in accuracy
is obtained. This is also present when using the LSTM
classifier and factor analysis, an increase of 5% is

Figure 10: Representation of Component 2 vs. Component 0 of the
factor analysis (FA) transformation with an output of 50
Components. Sleep stages: 0–Wake, 1–N1, 2–N2, 3–N3, 4– REM.

Figure 8: Representation of the meanTheta and meanAlpha values
of one frontal EEG signal across all epochs in the pre-processed
dataset. Sleep stages: 0 – Wake, 1 – N1, 2 – N2, 3 – N3, 4 – REM.

Figure 9: Representation of Component 7 vs. Component 0 of
the principal component analysis (PCA) transformation with an
output of 50 Components. Sleep stages: 0 – Wake, 1 – N1, 2 – N2,
3 – N3, 4 – REM.
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observed. A similar increase is also obtained when using
PCA prior to MLP and LSTM. When using autoencoders as
a dimensionality reduction method, the performance re-
mains in the same range as when no reduction is applied.
While looking at the results of the RF classifiers, the ob-
tained accuracies are in approximately the same range
with a decrease of maximum 5% in accuracy.

In case of RF, that has inherent feature selection, the
performance is increased as adequate input is selected.
Although the performance is significantly lower when us-
ing MLP and LSTM with the combination of EEG and other
signals, when applying factor analysis, the performance is
significantly improved. Factor analysis seems the most
suitable method for dimensionality reduction when using
MLP and LSTM networks. When using autoencoders, the
performance remains in the same range for all type of
classifiers. Applying dimensionality reduction techniques
for the selected PSG dataset, the accuracy of the obtained
models using the three selected classifiers remains the
same or in some cases it is even improved when compared
to the case when no dimensionality reduction is applied.

The importance and selection of features is relevant
when dealing with a large number of features used as
input. The aim of feature selection is to reduce the redun-
dancy of information and eliminate features that might
have a negative impact on performance. This is highlighted
by our results, where the RF classifier that inherently as-
signs a feature relevance (see Section 6) performs signifi-
cantly and consistently better than neural networks
without feature selection.

Overall, the performance obtained with the proposed
methods is in range with the performance of othermethods
that can be found in literature. Alickovic et al. [13] obtained
a higher accuracy of 97.25% using a subject specific sleep
stage classification method applied to 20 subjects from the
Sleep EDF dataset, on a single channel EEG. The approach
used a discrete wavelet transform for feature extraction
and PCA for dimensionality reduction prior to building a
model with a support vector machine classifier. In com-
parison, our method has a slightly lower performance
however we have created a general, non-patient specific
model based on a large dataset. The advantage of using a
larger dataset is the potential of capturing more variation
in the patient population which can lead to a better
discriminative power when presented with new data.

Biswal et al. [7] uses an extended version of the same
Physionet Challenge sleep dataset. Their best result was of
85.76% accuracy when using expert-defined features
extracted from six EEG channels as input to a recursive
neural network classifier. Kuo et al. [41] uses the same sleep
stage detection dataset for automated sleep scoring. All
PSG signals are used as input to a bi-directional LSTM
based classification algorithm. Within a hold out valida-
tion strategy,where 50%of the data is used for training and
50% of data is used for test, an accuracy of 82.9% is ob-
tained. When comparing our results with other methods
applied to the same dataset, we have obtained a perfor-
mance increase of 10%when using features extracted from
six EEG signals, ECG, EMG and respiratory signals with a
random forest classifier.

A limitation of our approach is the use of a single
dataset for training and testing. Although variations be-
tween patients are captured, different data setsmight bring
forth variations in the recorded physiological signals due
to the different recording equipment used. Although the
AASM guideline unifies the views on sleep architecture
content, there is some degree of variability in the annota-
tors’ interpretation of the PSG signals and therefore in the
provided annotations. The typical inter-scorer agreement is
around 80% [42]. Expert sleep scoring is used as the ground
truth in training machine learning algorithms. in general,
the performance of automated sleep stage scoringmethods
is limited by the quality of the provided annotations and of
the inter-scorer agreement.

Conclusions

In this paper, we have investigated several dimensionality
reduction techniques for a PSG dataset applied to the

Figure 11: Representation of Component 19 vs. Component 14 of the
Autoencoder dimensionality reduction with an output of 50
Components. Sleep stages: 0–Wake, 1–N1, 2–N2, 3–N3, 4– REM.
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problem of automated sleep stage detection. Autoencoders
are efficient in maintaining a similar performance to when
no dimensionality reduction is applied. However, statistical
transformations such as factor analysis and principal
component analysis can in some cases enhance the perfor-
mance. The accuracy of the trainedmodels is dependent not
only on the input dataset and the dimensionality reduction
applied, but also on the type of classifier used.

The highest performance for automated sleep scoring
was of 95% accuracy when using all input signals (six EEG
channels combined with ECG, EMG and Respiratory sig-
nals) with the RF classifier and applying no dimensionality
reduction method. The MLP and LSTM classifiers signifi-
cantly underperformed with respect to RF when no
dimensionality reduction was used. When FA was applied
their accuracy reached 94 and 92% respectively, signifi-
cantly improving the performance. Dimensionality reduc-
tion techniques help in reshaping the input data such that
computational power is reduced, and for some trans-
formations the performance is increased.

The architecture used for the autoencoder was
simple. Iterations on the architecture and parameters of
the autoencoder can lead to a better representation of
the data and thus increasing the performance. The
networks used for the classification can also be further
optimized. For instance, LSTM networks make use of
temporal information. Sleep patterns as recorded
through EEG signals show high variations over time.
LSTM can be used to capture long and short-term de-
pendencies within sleep patterns. Our future work will
focus on exploiting time-based information as well for
automatic sleep stage classification.
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