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Abstract

We develop a generalisation of disentanglement in
variational autoencoders (VAEs)—decomposition
of the latent representation—characterising it as
the fulfilment of two factors: a) the latent encod-
ings of the data having an appropriate level of
overlap, and b) the aggregate encoding of the data
conforming to a desired structure, represented
through the prior. Decomposition permits disen-
tanglement, i.e. explicit independence between
latents, as a special case, but also allows for a
much richer class of properties to be imposed on
the learnt representation, such as sparsity, clus-
tering, independent subspaces, or even intricate
hierarchical dependency relationships. We show
that the β-VAE varies from the standard VAE pre-
dominantly in its control of latent overlap and that
for the standard choice of an isotropic Gaussian
prior, its objective is invariant to rotations of the
latent representation. Viewed from the decompo-
sition perspective, breaking this invariance with
simple manipulations of the prior can yield better
disentanglement with little or no detriment to re-
constructions. We further demonstrate how other
choices of prior can assist in producing differ-
ent decompositions and introduce an alternative
training objective that allows the control of both
decomposition factors in a principled manner.

1. Introduction
An oft-stated motivation for learning disentangled represen-
tations of data with deep generative models is a desire to
achieve interpretability (Bengio et al., 2013; Chen et al.,
2017)—particularly the decomposability (see §3.2.1 in Lip-
ton, 2016) of latent representations to admit intuitive ex-
planations. Most work has focused on capturing purely
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independent factors of variation (Alemi et al., 2017; Ansari
and Soh, 2019; Burgess et al., 2018; Chen et al., 2018; 2017;
Eastwood and Williams, 2018; Esmaeili et al., 2019; Hig-
gins et al., 2016; Kim and Mnih, 2018; Xu and Durrett, 2018;
Zhao et al., 2017), typically evaluating this using purpose-
built, synthetic data (Eastwood and Williams, 2018; Higgins
et al., 2016; Kim and Mnih, 2018), whose generative factors
are independent by construction.

This conventional view of disentanglement, as recovering
independence, has subsequently motivated the development
of formal evaluation metrics for independence (Eastwood
and Williams, 2018; Kim and Mnih, 2018), which in turn
has driven the development of objectives that target these
metrics, often by employing regularisers explicitly encour-
aging independence in the representations (Eastwood and
Williams, 2018; Esmaeili et al., 2019; Kim and Mnih, 2018).

We argue that such an approach is not generalisable, and po-
tentially even harmful, to learning interpretable representa-
tions for more complicated problems, where such simplistic
representations cannot accurately mimic the generation of
high dimensional data from low dimensional latent spaces,
and more richly structured dependencies are required.

We posit a generalisation of disentanglement in VAEs—
decomposing their latent representations—that can help
avoid such pitfalls. We characterise decomposition in VAEs
as the fulfilment of two factors: a) the latent encodings of
data having an appropriate level of overlap, and b) the ag-
gregate encoding of data conforming to a desired structure,
represented through the prior. We emphasize that neither of
these factors is sufficient in isolation: without an appropriate
level of overlap, encodings can degrade to a lookup table
where the latents convey little information about data, and
without the aggregate encoding of data following a desired
structure, the encodings do not decompose as desired.

Disentanglement implicitly makes a choice of decomposi-
tion: that the latent features are independent of one another.
We make this explicit and exploit it to both provide im-
provement to disentanglement through judicious choices
of structure in the prior, and to introduce a more general
framework flexible enough to capture alternate, more com-
plex, notions of decomposition such as sparsity, clustering,
hierarchical structuring, or independent subspaces.
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To connect our framework with existing approaches for
encouraging disentanglement, we provide a theoretical anal-
ysis of the β-VAE (Alemi et al., 2018; 2017; Higgins et al.,
2016), and show that it typically only allows control of la-
tent overlap, the first decomposition factor. We show that it
can be interpreted, up to a constant offset, as the standard
VAE objective with its prior annealed as pθ(z)

β and an addi-
tional maximum entropy regularization of the encoder that
increases the stochasticity of the encodings. Specialising
this result for the typical choice of a Gaussian encoder and
isotropic Gaussian prior indicates that the β-VAE, up to a
scaling of the latent space, is equivalent to the VAE plus
a regulariser encouraging higher encoder variance. More-
over, this objective is invariant to rotations of the learned
latent representation, meaning that it does not, on its own,
encourage the latent variables to take on meaningful repre-
sentations any more than an arbitrary rotation of them.

We confirm these results empirically, while further using
our decomposition framework to show that simple manipu-
lations to the prior can improve disentanglement, and other
decompositions, with little or no detriment to the recon-
struction accuracy. Further, motivated by our analysis, we
propose an alternative objective that takes into account the
distinct needs of the two factors of decomposition, and use
it to learn clustered and sparse representations as demonstra-
tions of alternative forms of decomposition. An implementa-
tion of our experiments and suggested methods is provided
at http://github.com/iffsid/disentangling-disentanglement.

2. Background and Related Work
2.1. Variational Autoencoders

Let x be an X -valued random variable distributed according
to an unknown generative process with density pD(x) and
from which we have observations, X = {x1, . . . ,xn}. The
aim is to learn a latent-variable model pθ(x, z) that captures
this generative process, comprising of a fixed1 prior over
latents p(z) and a parametric likelihood pθ(x|z). Learning
proceeds by minimising a divergence between the true data
generating distribution and the model w.r.t θ, typically

arg min
θ

KL(pD(x) ‖ pθ(x)) = arg max
θ

EpD(x)[log pθ(x)]

where pθ(x) =
∫
Z pθ(x|z)p(z)dz is the marginal likeli-

hood, or evidence, of datapoint x under the model, approxi-
mated by averaging over the observations.

However, estimating pθ(x) (or its gradients) to any suffi-
cient degree of accuracy is typically infeasible. A common
strategy to ameliorate this issue involves the introduction of
a parametric inference model qφ(z|x) to construct a varia-

1Learning the prior is possible, but omitted for simplicity.

tional evidence lower bound (ELBO) on log pθ(x) as follows

L(x;θ,φ), log pθ(x)− KL(qφ(z|x) ‖ pθ(z|x))

=Eqφ(z|x)[log pθ(x|z)]−KL(qφ(z|x)‖p(z)).
(1)

A variational autoencoder (VAE) (Kingma and Welling,
2014; Rezende et al., 2014) views this objective from the
perspective of a deep stochastic autoencoder, taking the
inference model qφ(z|x) to be an encoder and the like-
lihood model pθ(x|z) to be a decoder. Here θ and φ
are neural network parameters, and learning happens via
stochastic gradient ascent (SGA) using unbiased estimates
of∇θ,φ 1

n

∑n
i=1 L(xi; θ, φ). Note that when clear from the

context, we denote L(x; θ, φ) as simply L(x).

2.2. Disentanglement

Disentanglement, as typically employed in literature, refers
to independence among features in a representation (Bengio
et al., 2013; Eastwood and Williams, 2018; Higgins et al.,
2018). Conceptually, however, it has a long history, far
longer than we could reasonably do justice here, and is far
from specific to VAEs. The idea stems back to traditional
methods such as ICA Hyvärinen and Oja (2000); Yang and
Amari (1997) and conventional autoencoders Schmidhuber
(1992), through to a range of modern approaches employing
deep learning Achille and Soatto (2019); Chen et al. (2016);
Cheung et al. (2014); Hjelm et al. (2019); Makhzani et al.
(2015); Mathieu et al. (2016); Reed et al. (2014).

Of particular relevance to this work are approaches that ex-
plore disentanglement in the context of VAEs Alemi et al.
(2017); Chen et al. (2018); Esmaeili et al. (2019); Higgins
et al. (2016); Kim and Mnih (2018); Siddharth et al. (2017).
Here one aims to achieve independence between the di-
mensions of the aggregate encoding, typically defined as
qφ(z) , EpD(x) [q(z|x)] ≈ 1

n

∑n
i q(z|xi). The signifi-

cance of qφ(z) is that it is the marginal distribution induced
on the latents by sampling a datapoint and then using the en-
coder to sample an encoding given that datapoint. It can thus
informally be thought of as the pushforward distribution for
“sampling” representations in the latent space.

Within the disentangled VAEs literature, there is also a
distinction between unsupervised approaches, and semi-
supervised approaches wherein one has access to the true
generative factor values for some subset of data (Boucha-
court et al., 2018; Kingma et al., 2014; Siddharth et al.,
2017). Our focus, however, is on the unsupervised setting.

Much of the prior work in the field has either implicitly or
explicitly presumed a slightly more ambitious definition of
disentanglement than considered above: that it is a measure
of how well one captures true factors of variation (which
happen to be independent by construction for synthetic data),
rather than just independent factors. After all, if we wish
for our learned representations to be interpretable, it is nec-

http://github.com/iffsid/disentangling-disentanglement
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essary for the latent variables to take on clear-cut meaning.

One such definition is given by Eastwood and Williams
(2018), who define it as the extent to which a latent dimen-
sion d ∈ D in a representation predicts a true generative
factor k ∈ K, with each latent capturing at most one gener-
ative factor. This implicitly assumes D ≥ K, as otherwise
the latents are unable to explain all the true generative fac-
tors. However, for real data, the association is more likely
D � K, with one learning a low-dimensional abstraction
of a complex process involving many factors. Consequently,
such simplistic representations cannot, by definition, be
found for more complex datasets that require more richly
structured dependencies to be able to encode the informa-
tion required to generate higher dimensional data. Moreover,
for complex datasets involving a finite set of datapoints, it
might not be reasonable to presume that one could capture
the elements of the true generative process—the data itself
might not contain sufficient information to recover these
and even if it does, the computation required to achieve this
through model learning is unlikely to be tractable.

The subsequent need for richly structured dependencies
between latent dimensions has been reflected in the mo-
tivation for a handful of approaches (Bouchacourt et al.,
2018; Esmaeili et al., 2019; Johnson et al., 2016; Siddharth
et al., 2017) that explore this through graphical models,
although employing mutually-inconsistent, and not general-
isable, interpretations of disentanglement. This motivates
our development of a decomposition framework as a means
of extending beyond the limitations of disentanglement.

3. Decomposition: A Generalisation of
Disentanglement

The commonly assumed notion of disentanglement is quite
restrictive for complex models where the true generative
factors are not independent, very large in number, or where
it cannot be reasonably assumed that there is a well-defined
set of “true” generative factors (as will be the case for many,
if not most, real datasets). To this end, we introduce a gen-
eralization of disentanglement, decomposition, which at a
high-level can be thought of as imposing a desired structure
on the learned representations. This permits disentangle-
ment as a special case, for which the desired structure is that
qφ(z) factors along its dimensions.

We characterise the decomposition of latent spaces in VAEs
to be the fulfilment of two factors (as shown in Figure 1):

a. An “appropriate” level of overlap in the latent space—
ensuring that the range of latent values capable of encod-
ing a particular datapoint is neither too small, nor too
large. This is, in general, dictated by the level of stochas-
ticity in the encoder: the noisier the encoding process is,
the higher the number of datapoints which can plausibly
give rise to a particular encoding.
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Figure 1. The two factors of decomposition. [Top] Overlap be-
tween encodings qφ(z | xi), showing cases with (l) too little over-
lap, (m) too much overlap, and (r) an “appropriate” level of overlap.
[Bottom] Illustration of (l) good and (r) bad regularisation between
the aggregate posterior qφ(z) and the desired prior p(z).

b. The aggregate encoding qφ(z) matching the prior p(z),
where the latter expresses the desired dependency struc-
ture between latents.

The overlap factor (a) is perhaps best understood by con-
sidering extremes—too little, and the latents effectively be-
come a lookup table; too much, and the data and latents
do not convey information about each other. In either case,
meaningfulness of the latent encodings is lost. Thus, with-
out the appropriate level of overlap—dictated both by noise
in the true generative process and dataset size—it is not
possible to enforce meaningful structure on the latent space.
Though quantitatively formalising overlap in general scenar-
ios is surprisingly challenging (c.f. § 7 and Appendix D), we
note for now that when the encoder distribution is unimodal,
it is typically well-characterized by the mutual information
between the data and the latents I(x; z).

The regularisation factor (b) enforces a congruence between
the (aggregate) latent embeddings of data and the depen-
dency structures expressed in the prior. We posit that such
structure is best expressed in the prior, as opposed to explicit
independence regularisation of the marginal posterior (Chen
et al., 2018; Kim and Mnih, 2018), to enable the generative
model to express the desired decomposition, and to avoid
potentially violating self-consistency between the encoder,
decoder, and true data generating distributions. The prior
also provides a rich and flexible means of expressing desired
structure by defining a generative process that encapsulates
dependencies between variables, as with a graphical model.

Critically, neither factor is sufficient in isolation. An inap-
propriate level of overlap in the latent space will impede
interpretability, irrespective of quality of regularisation, as
the latent space need not be meaningful. Conversely, with-
out the pressure to regularise to the prior, the latent space is
under no constraint to exhibit the desired structure.

Decomposition is inherently subjective as we must choose
the structure of the prior we regularise to depending on how
we intend to use our learned model or what kind of features
we would like to uncover from the data. This may at first

Max
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seem unsatisfactory compared to the seemingly objective
adjustments often made to the ELBO by disentanglement
methods. However, disentanglement is itself a subjective
choice for the decomposition. We can embrace this sub-
jective nature through judicious choices of the prior dis-
tribution; ignoring this imposes unintended assumptions
which can have unwanted effects. For example, as we will
later show, the rotational invariance of the standard prior
p(z) = N (z; 0, I) can actually hinder disentanglement.

4. Deconstructing the β-VAE

To connect existing approaches to our proposed framework,
we now consider, as a case study, the β-VAE (Higgins et al.,
2016)—an adaptation of the VAE objective (ELBO) to learn
better-disentangled representations. Specifically, it scales
the KL term in the standard ELBO by a factor β > 0 as

Lβ(x)=Eqφ(z|x)[log pθ(x|z)]−β KL(qφ(z|x)‖p(z)). (2)

Hoffman et al. (2017) showed that the β-VAE target can
be viewed as a standard ELBO with the alternative prior
r(z) ∝ qφ(z)

(1−β)
p(z)β , along with terms involving the

mutual information and the prior’s normalising constant.

We now introduce an alternate deconstruction as follows

Theorem 1. The β-VAE target Lβ(x) can be interpreted in
terms of the standard ELBO,L (x;πθ,β , qφ), for an adjusted
target πθ,β(x, z) , pθ(x | z)fβ(z) with annealed prior
fβ(z) , p(z)

β
/Fβ as

Lβ(x) = L (x;πθ,β , qφ) + (β − 1)Hqφ + logFβ (3)

where Fβ ,
∫
z
p(z)

β
dz is constant given β, and Hqφ is

the entropy of qφ(z | x).

Proof. All proofs are given in Appendix A.

Clearly, the second term in (3), enforcing a maximum en-
tropy regulariser on the posterior qφ(z | x), allows the value
of β to affect the overlap of encodings in the latent space.
We thus see that it provides a means of controlling decompo-
sition factor (a). However, it is itself not sufficient to enforce
disentanglement. For example, the entropy of qφ(z | x) is
independent of its mean µθ(x) and is independent to rota-
tions of z, so it is clearly incapable of discouraging certain
representations with poor disentanglement. All the same,
having the wrong level of regularization can, in turn, lead to
an inappropriate level of overlap and undermine the ability
to disentangle. Consequently, this term is still important.

Although the precise impact of prior annealing depends on
the original form of the prior, the high-level effect is the
same—larger values of β cause the effective latent space
to collapse towards the modes of the prior. For uni-modal
priors, the main effect of annealing is to reduce the scaling
of z; indeed this is the only effect for generalized Gaus-
sian distributions. While this would appear not to have any

tangible effects, closer inspection suggests otherwise—it
ensures that the scaling of the encodings matches that of the
prior. Only incorporating the maximum-entropy regulari-
sation will simply cause the scaling of the latent space to
increase. The rescaling of the prior now cancels this effect,
ensuring the scaling of qφ(z) matches that of p(z).

Taken together, this implies that the β-VAE’s ability to en-
courage disentanglement is predominantly through direct
control over the level of overlap. It places no other direct
constraint on the latents to disentangle (although in some
cases, the annealed prior may inadvertently encourage better
disentanglement), but instead helps avoid the pitfalls of inap-
propriate overlap. Amongst other things, this explains why
large β is not universally beneficial for disentanglement, as
the level of overlap can be increased too far.

4.1. Special Case – Gaussians

We can gain further insights into the β-VAE in the common
use case—assuming a Gaussian prior, p(z) = N (z; 0,Σ),
and Gaussian encoder, qφ(z | x) = N (z;µφ(x), Sφ(x)).
Here it is straightforward to see that annealing simply scales
the latent space by 1/

√
β, i.e. fβ(z) = N (z; 0,Σ/β).

Given this, it is easy to see that a VAE trained with the
adjusted target L (x;πθ,β , qφ), but appropriately scaling the
latent space, will behave identically to one trained with the
original target L(x). It will also have an identical ELBO as
the expected reconstruction is trivially the same, while the
KL between Gaussians is invariant to scaling both equally.
More precisely, we have the following result.
Corollary 1. If p(z) = N (z; 0,Σ) and qφ(z | x) =
N (z;µφ(x), Sφ(x)), then,

Lβ(x; θ, φ) = L (x; θ′, φ′) +
(β − 1)

2
log|Sφ′(x)|+ c (4)

where θ′ and φ′ represent rescaled networks such that

pθ′(x | z) = pθ

(
x | z/

√
β
)
,

qφ′(z|x) = N (z;µφ′(x), Sφ′(x)) ,

µφ′(x) =
√
βµφ(x), Sφ′(x) = βSφ(x),

and c , D(β−1)
2

(
1 + log 2π

β

)
+ logFβ is a constant,

with D denoting the dimensionality of z.

Noting that as c is irrelevant to the training process, this
indicates an equivalence, up to scaling of the latent space,
between training with the β-VAE objective and a maximum-
entropy regularised version of the standard ELBO

LH,β(x) , L(x) +
(β − 1)

2
log|Sφ(x)|, (5)

whenever p(z) and qφ(z | x) are Gaussian. Note that we
implicitly presume suitable adjustment of neural-network
hyper-parameters and the stochastic gradient scheme to ac-
count for the change of scaling in the optimal networks.

Max
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Moreover, the stationary points for the two objectives
Lβ(x; θ, φ) and LH,β (x; θ′, φ′) are equivalent (c.f. Corol-
lary 2 in Appendix A), indicating that optimising for (5)
leads to networks equivalent to those from optimising the β-
VAE objective (2), up to scaling the encodings by a factor of√
β. Under the isotropic Gaussian prior setting, we further

have the following result showing that the β-VAE objective
is invariant to rotations of the latent space.

Theorem 2. If p(z) = N (z; 0, σI) and qφ(z | x) =
N (z;µφ(x), Sφ(x)), then for all rotation matrices R,

Lβ(x; θ, φ) =Lβ(x; θ†(R), φ†(R)) (6)

where θ†(R) and φ†(R) are transformed networks such that

pθ†(x | z) = pθ
(
x | RTz

)
,

qφ†(z|x) = N
(
z;Rµφ(x), RSφ(x)RT

)
.

This shows that the β-VAE objective does not directly en-
courage latent variables to take on meaningful representa-
tions when using the standard choice of an isotropic Gaus-
sian prior. In fact, on its own, it encourages latent representa-
tions which match the true generative factors no more than it
encourages any arbitrary rotation of these factors, with such
rotations capable of exhibiting strong correlations between
latents. This view is further supported by our empirical
results (see Figure 2), where we did not observe any gains
in disentanglement (using the metric from Kim and Mnih
(2018)) from increasing β > 0 with an isotropic Gaussian
prior trained on the 2D Shapes dataset (Matthey et al., 2017).
It may also go some way to explaining the extremely high
levels of variation we found in the disentanglement-metric
scores between different random seeds at train time.

It should be noted, however, that the value of β can indirectly
influence the level of disentanglement when using a mean-
field assumption for the encoder distribution (i.e. restricting
Sφ(x) to be diagonal). As noted by Rolinek et al. (2018);
Stühmer et al. (2019), increasing β can reinforce existing
inductive biases, wherein mean-field assumptions encourage
representations which reduce dependence between the latent
dimensions (Turner and Sahani, 2011).

5. An Objective for Enforcing Decomposition
Given the characterisation set out above, we now develop
an objective that incorporates the effect of both factors (a)
and (b). Our analysis of the β-VAE tells us that its ob-
jective allows direct control over the level of overlap, i.e.
factor (a). To incorporate direct control over the regulari-
sation (b) between the marginal posterior and the prior, we
add a divergence term D(qφ(z), p(z)), yielding

Lα,β(x) = Eqφ(z|x)[log pθ(x | z)]

− β KL(qφ(z | x) ‖ p(z))− α D(qφ(z), p(z))
(7)

allowing control over how much factors (a) and (b) are en-
forced, through appropriate setting of β and α respectively.

Note that such an additional term has been previously con-
sidered by Kumar et al. (2017), with D(qφ(z), p(z)) =
KL(qφ(z) ‖ p(z)), although for the sake of tractability they
rely instead on moment matching using covariances. There
have also been a number of approaches that decompose
the standard VAE objective in different ways (e.g. Dilok-
thanakul et al., 2019; Esmaeili et al., 2019; Hoffman and
Johnson, 2016) to expose KL(qφ(z) ‖ p(z)) as a compo-
nent, but, as we discuss in Appendix C, this can be difficult
to compute correctly in practice, with common approaches
leading to highly biased estimates whose practical behaviour
is very different than the divergence they are estimating, un-
less very large batch sizes are used.

Wasserstein Auto-Encoders (Tolstikhin et al., 2018) formu-
late an objective that includes a general divergence term
between the prior and marginal posterior, computed us-
ing either maximum mean discrepancy (MMD) or a varia-
tional formulation of the Jensen-Shannon divergence (a.k.a
GAN loss). However, we find that empirically, choosing the
MMD’s kernel and numerically stabilising its U-statistics
estimator to be tricky, and designing and learning a GAN to
be cumbersome and unstable. Consequently, the problems
of choosing an appropriate D(qφ(z), p(z)) and generating
reliable estimates for this choice are tightly coupled, with
a general purpose solution remaining an important open
problem; see further discussion in Appendix C.

6. Experiments
6.1. Prior for Axis-Aligned Disentanglement

We first show how subtle changes to the prior distribution
can yield improvements in disentanglement. The standard
choice of an isotropic Gaussian has previously been justified
by the correct assertion that the latents are independent
under the prior (Higgins et al., 2016). However, as explained
in § 4.1, the rotational invariance of this prior means that
it does not directly encourage axis-aligned representations.
Priors that break this rotational invariance should be better
suited for learning disentangled representations. We assess
this hypothesis by training a β-VAE (i.e. (7) with α = 0) on
the 2D Shapes dataset (Matthey et al., 2017) and evaluating
disentanglement using the metric of Kim and Mnih (2018).

Figure 2 demonstrates that notable improvements in disen-
tanglement can be achieved by using non-isotropic priors:
for a given reconstruction loss, implicitly fixed by β, non-
isotropic Gaussian priors got better disentanglement scores,
with further improvement achieved when the prior variance
is learnt. With a product of Student-t priors pν(z) (noting
pν(z)→ N (z; 0, I) as ν →∞), reducing ν only incurred a
minor reconstruction penalty, for improved disentanglement.

Max
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Figure 2. Reconstruction loss vs disentanglement metric of Kim and Mnih (2018). [Left] Using an anisotropic Gaussian with diagonal
covariance either learned, or fixed to principal-component values of the dataset. Point labels represent different values of β. [Right]
Using pν(z)=

∏
dSTUDENT-T(zd; ν) for different ν with β = 1. Note the different x-axis scaling. Shaded areas represent ±2 standard

errors for estimated mean disentanglement calculated using 100 separately trained networks. We thus see that the variability on the
disentanglement metric is very large, presumably because of stochasticity in whether learned dimensions correspond to true generative
factors. The variability in the reconstruction was only negligible and so is not shown. See Appendix B for full experimental details.

β = 0.01 β = 0.5 β = 1.0 β = 1.2

α
=

0
β

=
0

α = 1 α = 3 α = 5 α = 8
Figure 3. Density of aggregate posterior qφ(z) with different α, β
for spirals dataset with a mixture of Gaussian prior.

Interestingly, very low values of ν caused the disentangle-
ment score to drop again (though still giving higher values
than the Gaussian). We speculate that this may be related to
the effect of heavy tails on the disentanglement metric itself,
rather than being an objectively worse disentanglement. An-
other interesting result was that for an isotropic Gaussian
prior, as per the original β-VAE setup, no gains at all were
achieved in disentanglement by increasing β.

6.2. Clustered Prior

We next consider an alternative decomposition one might
wish to impose—clustering of the latent space. For this, we
use the “pinwheels” dataset from (Johnson et al., 2016) and
a mixture of four equally-weighted Gaussians as our prior.
We then conduct an ablation study to observe the effect of
varying α and β in Lα,β(x) (as per (7)) on the learned rep-
resentations, taking the divergence to be KL (p(z)||qφ(z))
(see Appendix B for details).

We see in Figure 3 that increasing β increases the level of
overlap in qφ(z), as a consequence of increasing the encoder
variance for individual datapoints. When β is too large, the
encoding of a datapoint loses meaning. Also, as a single
datapoint encodes to a Gaussian distribution, qφ(z|x) is

unable to match p(z) exactly. Because qφ(z|x) → qφ(z)
when β → ∞, this in turn means that overly large values
of β actually cause a mismatch between qφ(z) and p(z)
(see top right of Figure 3). Increasing α, instead always
improved the match between qφ(z) and p(z). Here, the
finiteness of the dataset and the choice of divergence results
in an increase in overlap with increasing α, but only up
to the level required for a non-negligible overlap between
the nearby datapoints: large values of α did not cause the
encodings to collapse to a mode.

6.3. Prior for Sparsity

Finally, we consider a commonly desired decomposition—
sparsity, which stipulates that only a small fraction of avail-
able factors are employed. That is, a sparse representation
(Olshausen and Field, 1996) can be thought of as one where
each embedding has a significant proportion of its dimen-
sions off, i.e. close to 0. Sparsity has often been considered
for feature-learning (Coates and Ng, 2011; Larochelle and
Bengio, 2008) and employed in the probabilistic modelling
literature (Lee et al., 2007; Ranzato et al., 2007).

Common ways to achieve sparsity are through a specific
penalty (e.g. l1) or a careful choice of prior (peaked at
0). Concomitant with our overarching desire to encode
requisite structure in the prior, we adopt the latter, construct-
ing a sparse prior as p(z) =

∏
d (1 − γ) N (zd; 0, 1) +

γ N (zd; 0, σ2
0) with σ2

0 = 0.05. This mixture distribution
can be interpreted as a mixture of samples being either off
or on, whose proportion is set by the weight parameter γ.
We use this prior to learn a VAE for the Fashion-MNIST
dataset (Xiao et al., 2017) using the objective Lα,β(x) (as
per (7)), taking the divergence to be an MMD with a kernel
that only considers difference between the marginal distri-
butions (see Appendix B for details).

We measure a representation’s sparsity using the Hoyer
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Figure 4. [Left] Sparsity vs regularisation strength α (c.f. (7), high better). [Center] Average reconstruction log-likelihood
EpD(x)[Eqφ(z|x)[log pθ(x|z)]] vs α (higher better). [Right] Divergence (MMD) vs α (lower better). Note here that the different
values of γ represent regularizations to different distributions, with regularization to a Gaussian (i.e. γ = 0) much easier to achieve than
the sparse prior, hence the lower divergence. Shaded areas represent ±2 standard errors in the mean estimate calculated using 8 separately
trained networks. See Appendix B for full experimental details.

extrinsic metric (Hurley and Rickard, 2008). For y ∈ Rd,

Hoyer (y) =

√
d− ‖y‖1/‖y‖2√

d− 1
∈ [0, 1],

yielding 0 for a fully dense vector and 1 for a fully sparse
vector. Rather than employing this metric directly to the
mean encoding of each datapoint, we first normalise each
dimension to have a standard deviation of 1 under its aggre-
gate distribution, i.e. we use z̄d = zd/σ(zd) where σ(zd) is
the standard deviation of dimension d of the latent encoding
taken over the dataset. This normalisation is important as
one could achieve a “sparse” representation simply by hav-
ing different dimensions vary along different length scales
(something the β-VAE encourages through its pruning of
dimensions (Stühmer et al., 2019)), whereas we desire a rep-
resentation where different datapoints “activate” different
features. We then compute overall sparsity by averaging
over the dataset as Sparsity = 1

n

∑n
i Hoyer (z̄i). Figure 4

(left) shows that substantial sparsity can be gained by replac-
ing a Gaussian prior (γ = 0) by a sparse prior (γ = 0.8).
It further shows substantial gains from the inclusion of the
aggregate posterior regularization, with α = 0 giving far
low sparsity than α > 0, when using our sparse prior. The
use of our sparse prior did not generally harm the recon-
struction compared. Large values of α did slightly worsen
the reconstruction, but this drop-off was much slower than
increases in β (note that α is increased to much higher levels
than β). Interestingly, we see that β being either too low or
too high also harmed the sparsity.

We explore the qualitative effects of sparsity in Figure 5, us-
ing a network trained with α = 1000, β = 1, and γ = 0.8,
corresponding to one of the models in Figure 4 (left). The
top plot shows the average encoding magnitude for data
corresponding to 3 of the 10 classes in the Fashion-MNIST
dataset. It clearly shows that the different classes (trousers,
dress, and shirt) predominantly encode information along
different sets of dimensions, as expected for sparse represen-
tations (c.f. Appendix B for plots for all classes). For each
of these classes, we explore the latent space along a partic-
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Figure 5. Qualitative evaluation of sparsity. [Top] Average encod-
ing magnitude over data for three example classes in Fashion-
MNIST. [Bottom] Latent interpolation (↓) for different datapoints
(top layer) along particular ‘active’ dimensions. (a) Separation
between the legs of trousers (dim 49). (b) Top/Collar width of
dresses (dim 30). (c) Shirt shape (loose/fitted, dim 19). (d) Style
of sleeves across different classes—t-shirt, dress, and coat (dim
40).
ular ‘active’ dimension—one with high average encoding
magnitude—to observe if they capture meaningful features
in the image. We first identify a suitable ‘active’ dimen-
sion for a given instance (top row) from the dimension-wise
magnitudes of its encoding, by choosing one, say d, where
the magnitude far exceeds σ2

0 . Given encoding value zd,
we then interpolate along this dimension (keeping all others
fixed) in the range (zd, zd + sign(zd)); the sign of zd indi-
cating the direction of interpolation. Exploring the latent
space in such a manner demonstrates a variety of consistent
feature transformations in the image, both within class (a,
b, c), and across classes (d), indicating that these sparse
dimensions do capture meaningful features in the image.

Concurrent to our work, Tonolini et al. (2019) also consid-
ered imposing sparsity in VAEs with a spike-slab prior (such
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that σ0 → 0). In contrast to our work, they do not impose
a constraint on the aggregate encoder, nor do they evaluate
their results with a quantitative sparsity metric that accounts
for the varying length scales of different latent dimensions

7. Discussion
Characterising Overlap Precisely formalising what con-
stitutes the level of overlap in the latent space is surprisingly
subtle. Prior work has typically instead considered control-
ling the level of compression through the mutual information
between data and latents I(x; z) (Alemi et al., 2018; 2017;
Hoffman and Johnson, 2016; Phuong et al., 2018), with,
for example, (Phuong et al., 2018) going on to discuss how
controlling the compression can “explicitly encourage use-
ful representations.” Although I(x; z) provides a perfectly
serviceable characterisation of overlap in a number of cases,
the two are not universally equivalent and we argue that it is
the latter which is important in achieving useful representa-
tions. In particular, if the form of the encoding distribution
is not fixed—as when employing normalising flows, for
example—I(x; z) does not necessarily characterise overlap
well. We discuss this in greater detail in Appendix D.

However, when the encoder is unimodal with fixed form (in
particularly the tail behaviour is fixed) and the prior is well-
characterised by Euclidean distances, then these factors have
a substantially reduced ability to vary for a given I(x; z),
which subsequently becomes a good characterisation of the
level of overlap. When qφ(z|x) is Gaussian, controlling the
variance of qφ(z|x) (with a fixed qφ(z)) should similarly
provide an effective means of achieving the desired over-
lap behaviour. As this is the most common use case, we
leave the development of more a general definition of over-
lap to future work, simply noting that this is an important
consideration when using flexible encoder distributions.

Can VAEs Uncover True Generative Factors? In con-
currently published work, Locatello et al. (2019) question
the plausibility of learning unsupervised disentangled rep-
resentations with meaningful features, based on theoretical
analyses showing an equivalence class of generative mod-
els, many members of which could be entangled. Though
their analysis is sound, we posit a counterargument to their
conclusions, based on the stochastic nature of the encodings
used during training. Namely, that this stochasticity means
that they need not give rise to the same ELBO scores (an
important exception is the rotational invariance for isotropic
Gaussian priors). Essentially, the encoding noise forces
nearby encodings to relate to similar datapoints, while stan-
dard choices for the likelihood distribution (e.g. assuming
conditional independence) ensure that information is stored
in the encodings, not just in the generative network. These
restrictions mean that the ELBO prefers smooth represen-
tations and, provided the prior is not rotationally invariant,
means that there no longer need be a class of different rep-

resentations with the same ELBO; simpler representations
are preferred to more complex ones.

The exact form of the encoding distribution is also important
here. For example, imagine we restrict the encoder variance
to be isotropic and then use a two dimensional prior where
one latent dimension has a much larger variance than the
other. It will be possible to store more information in the
prior dimension with higher variance (as we can spread
points out more relative to the encoder variance). Conse-
quently, that dimension is more likely to correspond to an
important factor of the generative process than the other. Of
course, this does not imply that this is a true factor of varia-
tion in the generative process, but neither is the meaning that
can be attributed to each dimension completely arbitrary.

All the same, we agree that an important area for future
work is to assess when, and to what extent, one might expect
learned representations to mimic the true generative process,
and, critically, when it should not. For this reason, we
actively avoid including any notion of a true generative
process in our definition of decomposition, but note that,
analogously to disentanglement, it permits such extension
in scenarios where doing so can be shown to be appropriate.

8. Conclusions
In this work, we explored and analysed the fundamental
characteristics of learning disentangled representations, and
showed how these can be generalised to a more general
framework of decomposition (Lipton, 2016). We charac-
terised the learning of decomposed latent representation
with VAEs in terms of the control of two factors: i) overlap
in the latent space between encodings of different datapoints,
and ii) regularisation of the aggregate encoding distribution
to the given prior, which encodes the structure one would
wish for the latent space to have.

Connecting prior work on disentanglement to this frame-
work, we analysed the β-VAE objective to show that its
contribution to disentangling is primarily through direct
control of the level of overlap between encodings of the
data, expressed by maximising the entropy of the encoding
distribution. In the commonly encountered case of assuming
an isotropic Gaussian prior and an independent Gaussian
posterior, we showed that control of overlap is the only
effect of the β-VAE. Motivated by this observation, we
developed an alternate objective for the ELBO that allows
control of the two factors of decomposability through an
additional regularisation term. We then conducted empirical
evaluations using this objective, targeting alternate forms
of decompositions such as clustering and sparsity, and ob-
served the effect of varying the extent of regularisation to
the prior on the quality of the resulting clustering and sparse-
ness of the learnt embeddings. The results indicate that we
were successful in attaining those decompositions.
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