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Abstract
Many real-world sequential decision making prob-
lems are partially observable by nature, and the
environment model is typically unknown. Con-
sequently, there is great need for reinforcement
learning methods that can tackle such problems
given only a stream of rewards and incomplete
and noisy observations. In this paper, we propose
deep variational reinforcement learning (DVRL),
which introduces an inductive bias that allows
an agent to learn a generative model of the en-
vironment and perform inference in that model
to effectively aggregate the available information.
We develop an n-step approximation to the evi-
dence lower bound (ELBO), allowing the model
to be trained jointly with the policy. This en-
sures that the latent state representation is suitable
for the control task. In experiments on Moun-
tain Hike and flickering Atari we show that our
method outperforms previous approaches relying
on recurrent neural networks to encode the past.

1. Introduction
Most deep reinforcement learning (RL) methods assume
that the state of the environment is fully observable at every
time step. However, this assumption often does not hold in
reality, as occlusions and noisy sensors may limit the agent’s
perceptual abilities. Such problems can be formalised as
partially observable Markov decision processes (POMDPs)
(Astrom, 1965; Kaelbling et al., 1998). Because we usually
do not have access to the true generative model of our envi-
ronment, there is a need for reinforcement learning methods
that can tackle POMDPs when only a stream of observations
is given, without any prior knowledge of the latent state
space or the transition and observation functions.

POMDPs are notoriously hard to solve: since the current ob-
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(a) RNN-based approach. The RNN acts as an encoder for the
action-observation history, on which actor and critic are condi-
tioned. The networks are updated end-to-end with an RL loss.

(b) DVRL. The agent learns a generative model which is used to
update a belief distribution. Actor and critic now condition on the
belief. The generative model is learned to optimise both the ELBO
and the RL loss.

Figure 1: Comparison of RNN and DVRL encoders.

servation does in general not carry all relevant information
for choosing an action, information must be aggregated over
time and in general, the entire history must be taken into
account.

This history can be encoded either by remembering features
of the past (McCallum, 1993) or by performing inference to
determine the distribution over possible latent states (Kael-
bling et al., 1998). However, the computation of this belief
state requires knowledge of the model.

Most previous work on deep learning in POMDPs relies on
training a recurrent neural network (RNN) to summarise the
past. Examples are the deep recurrent Q-network (DRQN)
(Hausknecht & Stone, 2015) and the action-specific deep
recurrent Q-network (ADRQN) (Zhu et al., 2017). Because
these approaches are completely model-free, they place a
heavy burden on the RNN. Since performing inference im-
plicitly requires a known or learned model, they are likely to
summarise the history either by only remembering features
of the past or by computing simple heuristics instead of
actual belief states. This is often suboptimal in complex
tasks. Generalisation is also often easier over beliefs than
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over trajectories since distinct histories can lead to similar
or identical beliefs.

The premise of this work is that deep policy learning for
POMDPs can be improved by taking less of a black box
approach than DRQN and ADRQN. While we do not want to
assume prior knowledge of the transition and observation
functions or the latent state representation, we want to allow
the agent to learn models of them and infer the belief state
using these learned models.

To this end, we propose DVRL, which implements this ap-
proach by providing a helpful inductive bias to the agent.
In particular, we develop an algorithm that can learn an
internal generative model and use it to perform approximate
inference to update the belief state. Crucially, the generative
model is not only learned based on an ELBO objective, but
also by how well it enables maximisation of the expected
return. This ensures that, unlike in an unsupervised appli-
cation of variational autoencoders (VAEs), the latent state
representation and the inference performed on it are suitable
for the ultimate control task. Specifically, we develop an
approximation to the ELBO based on autoencoding sequen-
tial Monte Carlo (AESMC) (Le et al., 2018), allowing joint
optimisation with the n-step policy gradient update. Uncer-
tainty in the belief state is captured by a particle ensemble.
A high-level overview of our approach in comparison to
previous RNN-based methods is shown in Figure 1.

We evaluate our approach on Mountain Hike and several
flickering Atari games. On Mountain Hike (a low dimen-
sional, continuous environment), we can show that DVRL is
better than an RNN based approach at inferring the required
information from past observations for optimal action se-
lection in a simple setting. Our results on flickering Atari
show that this advantage extends to complex environments
with high dimensional observation spaces. Here, partial
observability is introduced by (1) using only a single frame
as input at each time step and (2) returning a blank screen
instead of the true frame with probability 0.5.

2. Background
In this section, we formalise POMDPs and provide back-
ground on recent advances in VAEs that we use. Lastly, we
describe the policy gradient loss based on n-step learning
and A2C.

2.1. Partially Observable Markov Decision Processes

A partially observable Markov decision process (POMDP) is
a tuple (S,A,O, F, U,R, b0), where S is the state space, A
the action space, and O the observation space. We denote
as st ∈ S the latent state at time t, and the distribution
over initial states s0 as b0, the initial belief state. When
an action at ∈ A is executed, the state changes accord-

ing to the transition distribution, st+1 ∼ F (st+1|st, at).
Subsequently, the agent receives a noisy or partially oc-
cluded observation ot+1 ∈ O according to the distribution
ot+1 ∼ U(ot+1|st+1, at), and a reward rt+1 ∈ R according
to the distribution rt+1 ∼ R(rt+1|st+1, at).

An agent acts according to its policy π(at|o≤t, a<t) which
returns the probability of taking action at at time t, and
where o≤t = (o1, . . . , ot) and a<t = (a0, . . . , at−1) are the
observation and action histories, respectively. The agent’s
goal is to learn a policy π that maximises the expected future
return

J = Ep(τ)

[
T∑
t=1

γt−1rt

]
, (1)

over trajectories τ = (s0, a0, . . . , aT−1, sT ) induced by its
policy1, where 0 ≤ γ < 1 is the discount factor. We follow
the convention of setting a0 to no-op (Zhu et al., 2017).

In general, a POMDP agent must condition its actions on
the entire history (o≤t, a<t) which grows exponentially in t.
This can be accomplished by memory based approaches, for
example by using suffix trees (McCallum & Ballard, 1996;
Shani et al., 2005; Bellemare et al., 2014; Bellemare, 2015;
Messias & Whiteson, 2017). However, those approaches
are only suitable for small discrete observation spaces and
suffer from large memory requirements.

Alternatively, it is possible to infer the filtering distribution
p(st|o≤t, a<t) =: bt, called the belief state. This is a suffi-
cient statistic of the history that can be used as input to an
optimal policy π?(at|bt). The belief space does not grow
exponentially, but the belief update step requires knowledge
of a model:

bt+1 =

∫
btU(ot+1|st+1, at)F (st+1|st, at)dst∫ ∫

btU(ot+1|st+1, at)F (st+1|st, at) dst dst+1
.

(2)

2.2. Variational Autoencoder

We define a family of priors pθ(s) over some latent state
s and decoders pθ(o|s) over observations o, both param-
eterised by θ. A variational autoencoder (VAE) learns θ
by maximising the sum of log marginal likelihood terms∑N
n=1 log pθ(o

(n)) for a dataset (o(n))Nn=1 where pθ(o) =∫
pθ(o|s)pθ(s) ds (Rezende et al., 2014; Kingma & Welling,

2014)) . Since evaluating the log marginal likelihood is in-
tractable, the VAE instead maximises a sum of ELBOs where
each individual ELBO term is a lower bound on the log
marginal likelihood,

ELBO(θ, φ, o) = Eqφ(s|o)

[
log

pθ(o|s)pθ(s)
qφ(s|o)

]
, (3)

1The trajectory length T is stochastic and depends on the time
at which the agent-environment interaction ends.

Max

Max
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for a family of encoders qφ(s|o) parameterised by φ. This
objective also forces qφ(s|o) to approximate the posterior
pθ(s|o) under the learned model. Gradients of (3) are esti-
mated by Monte Carlo sampling with the reparameterisation
trick (Kingma & Welling, 2014; Rezende et al., 2014).

2.3. VAE for Time Series

For sequential data, we assume that a series of latent states
s≤T gives rise to a series of observations o≤T . We consider
a family of generative models parameterised by θ that con-
sists of the initial distribution pθ(s0), transition distribution
pθ(st|st−1) and observation distribution pθ(ot|st). Given a
family of encoder distributions qφ(st|st−1, ot), we can also
estimate the gradient of the ELBO term in the same manner
as in (3), noting that:

pθ(s≤T , o≤T ) = pθ(s0)
T∏
t=1

pθ(st|st−1)pθ(ot|st), (4)

qφ(s≤T |o≤T ) = pθ(s0)

T∏
t=1

qφ(st|st−1, ot), (5)

where we slightly abuse notation for qφ by ignoring the fact
that we sample from the model pθ(s0) for t = 0. Le et al.
(2018), Maddison et al. (2017) and Naesseth et al. (2018)
introduce a new ELBO objective based on sequential Monte
Carlo (SMC) (Doucet & Johansen, 2009) that allows faster
learning in time series:

ELBOSMC(θ, φ, o≤T ) = E

[
T∑
t=1

log

(
1

K

K∑
k=1

wkt

)]
, (6)

where K is the number of particles and wkt is the weight
of particle k at time t. Each particle is a tuple containing
a weight wkt and a value skt which is obtained as follows.
Let sk0 be samples from pθ(s0) for k = 1, . . . ,K. For
t = 1, . . . , T , the weights wkt are obtained by resampling
the particle set (skt−1)Kk=1 proportionally to the previous
weights and computing

wkt =
pθ(s

k
t |s

ukt−1

t−1 )pθ(ot|skt )

qφ(skt |s
ukt−1

t−1 , ot)
, (7)

where skt corresponds to a value sampled from

qφ(·|su
k
t−1

t−1 , ot) and s
ukt−1

t−1 corresponds to the re-
sampled particle with the ancestor index uk0 = k

and ukt−1 ∼ Discrete((wkt−1/
∑K
j=1 w

j
t−1)Kk=1) for

t = 2, . . . , T .

2.4. A2C

One way to learn the parameters ρ of an agent’s policy
πρ(at|st) is to use n-step learning with A2C (Wu et al.,

2017), the synchronous simplification of asynchronous ad-
vantage actor-critic (A3C) (Mnih et al., 2016). An actor-
critic approach can cope with continuous actions and avoids
the need to draw state-action sequences from a replay buffer.
The method proposed in this paper is however equally ap-
plicable to other deep RL algorithms.

For n-step learning, starting at time t, the current policy
performs ns consecutive steps in ne parallel environments.
The gradient update is based on this mini-batch of size
ne × ns. The target for the value-function Vη(st+i), i =
0, . . . , ns − 1, parameterised by η, is the appropriately dis-
counted sum of on-policy rewards up until time t+ ns and
the off-policy bootstrapped value V −η (st+ns). The minus
sign denotes that no gradients are propagated through this
value. Defining the advantage function as

At,iη (st+i, at+i) :=

ns−i−1∑
j=0

γjrt+i+j


+ γns−iV −η (st+ns)− Vη(st+i) ,

(8)

the A2C loss for the policy parameters ρ at time t is

LAt (ρ) = − 1

nens
ne∑

envs

ns−1∑
i=0

log πρ(at+i|st+i)At,i,−η (st+i, at+i) ,

(9)

and the value function loss to learn η can be written as

LVt (η) =
1

nens

ne∑
envs

ns−1∑
i=0

At,iη (st+i, at+i)
2. (10)

Lastly, an entropy loss is added to encourage exploration:

LHt (ρ) = − 1

nens

ne∑
envs

ns−1∑
i=0

H(πρ(·|st+i)), (11)

where H(·) is the entropy of a distribution.

3. Deep Variational Reinforcement Learning
Fundamentally, there are two approaches to aggregating the
history in the presence of partial observability: remembering
features of the past or maintaining beliefs.

In most previous work, including ADRQN (Zhu et al., 2017),
the current history (a≤t, o<t) is encoded by an RNN, which
leads to the recurrent update equation for the latent state ht:

ht = RNNUpdateφ(ht−1, at−1, ot) . (12)

Since this approach is model-free and does not make use of
any generative model of the environment, it is unlikely to
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approximate belief update steps, instead relying on memory
or simple heuristics.

Inspired by the premise that a good way to solve many
POMDPs involves (1) estimating the transition and obser-
vation model of the environment, (2) performing inference
under this model, and (3) choosing an action based on the
inferred belief state, we propose deep variational reinforce-
ment learning (DVRL). It extends the RNN-based approach
to explicitly support belief inference. Training everything
end-to-end shapes the learned model to be useful for the RL
task at hand, and not only for predicting observations.

We first explain our baseline architecture and training
method in Section 3.1. For a fair comparison, we modify
the original architecture of Zhu et al. (2017) in several ways.
We find that our new baseline outperforms their reported
results in the majority of cases.

In Sections 3.2 and 3.3, we explain our new latent belief
state b̂t and the recurrent update function

b̂t = BeliefUpdateθ,φ(b̂t−1, at−1, ot) (13)

which replaces Equation (12). Lastly, in Section 3.4, we
describe our modified loss function, which allows learning
the model jointly with the policy.

3.1. Baseline Architecture

We will compare DVRL to an RNN based encoder as shown
in Figure 1. While previous work often used Q-learning
to train the policy (Hausknecht & Stone, 2015; Zhu et al.,
2017; Foerster et al., 2016; Narasimhan et al., 2015), we use
n-step A2C. This avoids drawing entire trajectories from a
replay buffer and allows continuous actions.

Furthermore, since A2C interleaves unrolled trajectories and
performs a parameter update only every ns steps, it makes it
feasible to maintain an approximately correct latent state. A
small bias is introduced by not recomputing the latent state
after each gradient update step.

We also modify the implementation of backpropagation-
throught-time (BPTT) for n-step A2C in the case of policies
with latent states. Instead of backpropagating gradients
only through the computation graph of the current update
involving ns steps, we set the size of the computation graph
independently to involve ng steps. This leads to an aver-
age BPTT-length of (ng − 1)/2.2 This decouples the bias-
variance tradeoff of choosing ns from the bias-runtime trade-
off of choosing ng. Our experiments show that choosing
ng > ns greatly improves the agent’s performance.

2This is implemented in PyTorch using the
retain graph=True flag in the backward() function.

3.2. Extending the Latent State

For DVRL, we extend the latent state to be a set of K par-
ticles, capturing the uncertainty in the belief state (Thrun,
2000; Silver & Veness, 2010). Each particle consists of the
triplet (hkt , z

k
t , w

k
t ) (Chung et al., 2015). The value hkt of

particle k is the latent state of an RNN; zkt is an additional
stochastic latent state that allows us to learn stochastic tran-
sition models; and wkt assigns each particle an importance
weight.

Our belief state b̂t is thus an approximation of the posterior
distribution in our learned model

pθ(h≤T , z≤T , o≤T |a<T ) = pθ(h0)

T∏
t=1

(
pθ(zt|ht−1, at−1)

pθ(ot|ht−1, zt, at−1)δψRNN
θ (ht−1,zt,at−1,ot)(ht)

)
, (14)

with stochastic transition model pθ(zt|ht−1, at−1), decoder
pθ(ot|ht−1, zt, at−1), and deterministic transition function
ht = ψRNN

θ (ht−1, zt, at−1, ot) which is denoted using the
Dirac delta distribution δ and for which we use an RNN.
The model is trained to jointly optimise the ELBO and the
expected return.

3.3. Recurrent Latent State Update

To update the latent state, we proceed as follows:

ukt−1 ∼ Discrete

(
wkt−1∑K
j=1 w

j
t−1

)
(15)

zkt ∼ qφ(zkt |h
ukt−1

t−1 , at−1, ot) (16)

hkt = ψRNN
θ (h

ukt−1

t−1 , z
k
t , at−1, ot) (17)

wkt =
pθ(z

k
t |h

ukt−1

t−1 , at−1)pθ(ot|h
ukt−1

t−1 , z
k
t , at−1)

qφ(zkt |h
ukt−1

t−1 , at−1, ot)
. (18)

First, we resample particles based on their weight by draw-
ing ancestor indices ukt−1. This improves model learning
(Le et al., 2018; Maddison et al., 2017) and allows us to
train the model jointly with the n-step loss (see Section 3.4).

For k = 1, . . . ,K, new values for zkt are sampled from

the encoder qφ(zkt |h
ukt−1

t−1 , at−1, ot) which conditions on the

resampled ancestor values h
ukt−1

t−1 as well as the last actions
at−1 and current observation ot. Latent variables zt are
sampled using the reparameterisation trick. The values zkt ,

together with h
ukt−1

t−1 , at−1 and ot, are then passed to the
transition function ψRNN

θ to compute hkt .

The weights wkt measure how likely each new latent state
value (zkt , h

k
t ) is under the model and how well it explains

the current observation.
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Figure 2: Overview of DVRL. We do the following K times to compute our new belief b̂t: Sample an ancestor index ukt−1 based on the

previous weights w1:K
t−1 (Eq. 15). Pick the ancestor particle value h

ukt−1
t−1 and use it to sample a new stochastic latent state zkt from the

encoder qφ (Eq. 16). Compute hkt (Eq. 17) and wkt (Eq. 18). Aggregate all K values into the new belief b̂t and summarise them into a
vector representation ĥt using a second RNN. Actor and critic can now condition on ĥt and b̂t is used as input for the next timestep. Red
arrows denote random sampling, green arrows the aggregation of K values. Black solid arrows denote the passing of a value as argument
to a function and black dashed ones the evaluation of a value under a distribution. Boxes indicate neural networks. Distributions are
normal or Bernoulli distributions whose parameters are outputs of the neural network.

To condition the policy πρ and value function Vη on the
belief b̂t = (zkt , h

k
t , w

k
t )Kk=1, we need to summarise the

set of particles into a single vector representation ĥt. One
option would be to copmute a weighted average over K
policies and value functions that each take in a single particle
value (zkt , h

k
t ) – this however would ignore the uncertainty

in the latent state after the next action (Littman et al., 1995).
Instead, we use a (second) RNN that sequentially takes in
each tuple (zkt , h

k
t , w

k
t ) and outputs ĥt as its last latent state.

Additional encoders are used for at, ot and zt; see Appendix
A for details. Figure 2 summarises the entire update step.

3.4. Loss Function

To encourage learning a model, we include the term

LELBO
t (θ, φ) = − 1

nens

ne∑
envs

ns−1∑
i=0

log

(
1

K

K∑
k=1

wkt+i

)
(19)

in each gradient update every ns steps. This leads to the
overall loss:

LDVRL
t (ρ, η, θ, φ) = LAt (ρ, θ, φ) + λHLHt (ρ, θ, φ)+

λV LVt (η, θ, φ) + λELELBO
t (θ, φ) . (20)

Compared to (9), (10) and (11), the losses now also depend
on the encoder parameters φ and model parameters θ, since
the policy and value function now condition on the latent

states instead of st. By introducing the n-step approxima-
tion LELBO

t , we can learn θ and φ to jointly optimise LELBO
t

and the RL loss LAt + λHLHt + λV LVt .

If we assume that observations and actions are drawn from
the stationary state distribution induced by the policy πρ,
then −LELBO

t is a stochastic approximation to the action-
conditioned ELBO:

1

T
Ep(τ) ELBOSMC(o≤T |a<T ) =

1

T
Ep(τ)E

[
T∑
t=1

log

(
1

K

K∑
k=1

wkt

)∣∣∣∣∣ a≤T
]
, (21)

which is a conditional extension of Equation (6), similar
to the extension of VAEs by Sohn et al. (2015). To make
Equation (21) tractable, we approximate the expectation
over p(τ) by using sampled trajectories from ne environ-
ments. Furthermore, because we assume a stationary state
distribution, we can take the sum

∑T
t=1 outside of both ex-

pectations. This allows us to perform a stochastic gradient
update that is based on only ns summands instead of all T ,
leading to Equation (19) which includes an additional minus
sign to account for its minimisation.

The importance of the resampling step (15) in allowing this
approximation becomes clear if we compare (21) with the
alternative ELBO for the importance weighted autoencoder
(IWAE) (Doucet & Johansen, 2009; Burda et al., 2016) that
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does not include resampling:

ELBOIWAE(o≤T |a<T ) = E

[
log

(
1

K

K∑
k=1

T∏
t=1

wkt

)∣∣∣∣∣ a≤T
]
.

(22)
Here, the product over time and summation over particles
are swapped. Because this loss is not additive over time
anymore, we cannot approximate it with shorter parts of
the trajectory. This prevents joint optimisation with the RL
loss.

4. Related Work
Most existing POMDP literature focusses on planning algo-
rithms, where the transition and observation functions, as
well as a representation of the latent state space, are known
(Barto et al., 1995; McAllester & Singh, 1999; Pineau et al.,
2003; Ross et al., 2008; Oliehoek et al., 2008; Roijers et al.,
2015). In most realistic domains however, these are not
known a priori.

There are several approaches that utilise RNNs in POMDPs
(Bakker, 2002; Wierstra et al., 2007; Zhang et al., 2015;
Heess et al., 2015), including multi-agent settings (Foerster
et al., 2016), learning text-based fantasy games (Narasimhan
et al., 2015) or, most recently, applied to Atari (Hausknecht
& Stone, 2015; Zhu et al., 2017). As discussed in Section
3, our algorithm extends those approaches by enabling the
policy to explicitly reason about a model and the belief state.

Another more specialised approach called QMDP-Net
(Karkus et al., 2017) learns a value iteration network (VIN)
(Tamar et al., 2016) end-to-end and uses it as a transition
model for planning. However, a VIN makes strong assump-
tions about the transition function and in QMDP-Net the
belief update must be performed analytically.

The idea to learn a particle filter based policy that is trained
using policy gradients was previously proposed by Coquelin
et al. (2009). However, they assume a known model and
rely on finite differences for gradient estimation.

Instead of optimising an ELBO to learn a maximum-
likelihood approximation for the latent representation and
corresponding transition and observation model, previous
work also tried to learn those dynamics using spectral meth-
ods (Azizzadenesheli et al., 2016), a Bayesian approach
(Ross et al., 2011; Katt et al., 2017), or nonparametrically
(Doshi-Velez et al., 2015). However, these approaches do
not scale to large or continuous state and observation spaces.
For continuous states, actions, and observations with Gaus-
sian noise, a Gaussian process model can be learned (Deisen-
roth & Peters, 2012). An alternative to learning an (approxi-
mate) transition and observation model is to learn a model
over trajectories (Willems et al., 1995). However, this is
again only possible for small, discrete observation spaces.

Due to the complexity of the learning in POMDPs, previous
work already found benefits to using auxiliary losses. Un-
like the losses proposed by Lample & Chaplot (2017), we
do not require additional information from the environment.
The UNREAL agent (Jaderberg et al., 2016) is, similarly
to our work, motivated by the idea to improve the latent
representation by utilising all the information already ob-
tained from the environment. While their work focuses
on finding unsupervised auxiliary losses that provide good
training signals, our goal is to use the auxiliary loss to better
align the network computations with the task at hand by
incorporating prior knowledge as an inductive bias.

There is some evidence from recent experiments on the
dopamine system in mice (Babayan et al., 2018) showing
that their response to ambiguous information is consistent
with a theory operating on belief states.

5. Experiments
We evaluate DVRL on Mountain Hike and on flickering Atari.
We show that DVRL deals better with noisy or partially oc-
cluded observations and that this scales to high dimensional
and continuous observation spaces like images and complex
tasks. We also perform a series of ablation studies, showing
the importance of using many particles, including the ELBO
training objective in the loss function, and jointly optimising
the ELBO and RL losses.

More details about the environments and model architec-
tures can be found in Appendix A together with additional
results and visualisations. All plots and reported results are
smoothed over time and parallel executed environments. We
average over five random seeds, with shaded areas indicat-
ing the standard deviation. All RNNs are gated recurrent
units (GRUs) (Cho et al., 2014).

5.1. Mountain Hike

In this task, the agent has to navigate along a mountain
ridge, but only receives noisy measurements of its current
location. Specifically, we have S = O = A = R2 where
st = [xt, yt]

T ∈ S and ot = [x̂t, ŷt]
T ∈ O are true and

observed coordinates respectively and at = [∆xt,∆yt]
T ∈

A is the desired step. Transitions are given by st+1 =
st+ ãt+εs,t with εs,t ∼ N (·|0, 0.25 ·I) and ãt is the vector
at with length capped to ‖ãt‖ ≤ 0.5. Observations are
noisy with ot = st+εo,t with εo,t ∼ N (·|0, σo ·I) and σo ∈
{0, 1.5, 3}. The reward at each timestep isRt = r(xt, yt)−
0.01‖at‖ where r(xt, yt) is shown in Figure 3. The starting
position is sampled from s0 ∼ N (·|[−8.5,−8.5]T , I) and
each episode ends after 75 steps.

DVRL used 30 particles and we set ng = 25 for both RNN
and DVRL. The latent state h for the RNN-encoder archi-
tecture was of dimension 256 and 128 for both z and h for

Max

Max
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Figure 3: Mountain Hike is a continuous control task with obser-
vation noise σo = 3. Background colour indicates rewards. Red
line: trajectory for RNN based encoder. Black line: trajectory for
DVRL encoder. Dots: received observations. Both runs share the
same noise values εi,t. DVRL achieves higher returns (see Fig. 4)
by better estimating its current location and remaining on the high
reward mountain ridge.

DVRL. Lastly, λE = 1 and ns = 5 were used, together with
RMSProp with a learning rate of 10−4 for both approaches.

The main difficulty in Mountain Hike is to correctly esti-
mate the current position. Consequently, the achieved return
reflects the capability of the network to do so. DVRL out-
performs RNN based policies, especially for higher levels
of observation noise σo (Figure 4). In Figure 3 we compare
the different trajectories for RNN and DVRL encoders for
the same noise, i.e. εRNN

s,t = εDVRL
s,t and εRNN

o,t = εDVRL
o,t for all

t and σo = 3. DVRL is better able to follow the mountain
ridge, indicating that its inference based history aggregation
is superior to a largely memory/heuristics based one.

The example in Figure 3 is representative but selected for
clarity: The shown trajectories have ∆J(σo = 3) = 20.7
compared to an average value of ∆J̄(σo = 3) = 11.43 (see
Figure 4).

5.2. Atari

We chose flickering Atari as evaluation benchmark, since it
was previously used to evaluate the performance of ADRQN
(Zhu et al., 2017) and DRQN (Hausknecht & Stone, 2015).
Atari environments (Bellemare et al., 2013) provide a wide
set of challenging tasks with high dimensional observation
spaces. We test our algorithm on the same subset of games
on which DRQN and ADRQN were evaluated.

Partial observability is introduced by flickering, i.e., by a
probability of 0.5 of returning a blank screen instead of
the actual observation. Furthermore, only one frame is
used as the observation. This is in line with previous work
(Hausknecht & Stone, 2015). We use a frameskip of four3

3A frameskip of one is used for Asteroids due to known ren-
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Figure 4: Returns achieved in Mountain Hike. Solid lines: DVRL.
Dashed lines: RNN. Colour: Noise levels. Inset: Difference in
performance between RNN and DVRL for same level of noise:
∆J̄(σo) = J̄(DVRL, σo) − J̄(RNN, σo). DVRL achieves slighly
higher returns for the fully observable case and, crucially, its perfor-
mance deteriorates more slowly for increasing observation noise,
showing the advantage of DVRL’s inference computations in en-
coding the history in the presence of observation noise.

and for the stochastic Atari environments there is a 0.25
chance of repeating the current action for a second time at
each transition.

DVRL used 15 particles and we set ng = 50 for both agents.
The dimension of h was 256 for both architectures, as was
the dimension of z. Larger latent states decreased the perfor-
mance for the RNN encoder. Lastly, λE = 0.1 and ns = 5
was used with a learning rate of 10−4 for RNN and 2 · 10−4

for DVRL, selected out of a set of 6 different rates based on
the results on ChopperCommand.

Table 1 shows the results for the more challenging stochastic,
flickering environments. Results for the deterministic envi-
ronments, including returns reported for DRQN and ADRQN,
can be found in Appendix A. DVRL significantly outper-
forms the RNN-based policy on five out of ten games and
narrowly underperforms significantly on only one. This
shows that DVRL is viable for high dimensional observation
spaces with complex environmental models.

5.3. Ablation Studies

Using more than one particle is important to accurately ap-
proximate the belief distribution over the latent state (z, h).
Consequently, we expect that higher particle numbers pro-
vide better information to the policy, leading to higher re-
turns. Figure 5a shows that this is indeed the case. This is
an important result for our architecture, as it also implies
that the resampling step is necessary, as detailed in Section
3.4. Without resampling, we cannot approximate the ELBO
on only ns observations.

dering issues with this environment
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formance for DVRL. Only using one particle
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(b) Performance of the full DVRL algorithm
compared to setting λE = 0 (”No ELBO”)
or not backpropagating the policy gradients
through the encoder (”No joint optim”).
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RNN suffers most from very short lengths.
This is consistent with our conjecture that
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Figure 5: Ablation studies on flickering ChopperCommand (Atari).

Table 1: Returns on stochastic and flickering Atari environments,
averaged over 5 random seeds. Bold numbers indicate statistical
significance at the 5% level. Out of ten games, DVRL significantly
outperforms the baseline on five games and underperforms nar-
rowly on only one game. Comparisons against DRQN and ADRQN
on deterministic Atari environments are in Appendix A.

Env DVRL(±std) RNN(±std)

Pong 18.17(±2.67) 6.33(±3.03)
Chopper 6602(±449) 5150(±488)
MsPacman 2221(±199) 2312(±358)
Centipede 4240(±116) 4395(±224)
BeamRider 1663(±183) 1801(±65)
Frostbite 297(±7.85) 254(±0.45)
Bowling 29.53(±0.23) 30.04(±0.18)
IceHockey −4.88(±0.17) −7.10(±0.60)
DDunk −5.95(±1.25) −15.88(±0.34)
Asteroids 1539(±73) 1545(±51)

Secondly, Figure 5b shows that the inclusion of LELBO

to encourage model learning is required for good perfor-
mance. Furthermore, not backpropagating the policy gradi-
ents through the encoder and only learning it based on the
ELBO (“No joint optim”) also deteriorates performance.

Lastly, we investigate the influence of the backpropaga-
tion length ng on both the RNN and DVRL based policies.
While increasing ng universally helps, the key insight here
is that a short length ng = 5 (for an average BPTT-length
of 2 timesteps) has a stronger negative impact on RNN than
on DVRL. This is consistent with our notion that RNN is
mainly performing memory based reasoning, for which
longer backpropagation-through-time is required: The be-
lief update (2) in DVRL is a one-step update from bt to bt+1,
without the need to condition on past actions and observa-

tions. The proposal distribution can benefit from extended
backpropagation lengths, but this is not necessary. Con-
sequently, this result supports our notion that DVRL relies
more on inference computations to update the latent state.

6. Conclusion
In this paper we proposed DVRL, a method for solving
POMDPs given only a stream of observations, without knowl-
edge of the latent state space or the transition and observa-
tion functions operating in that space. Our method leverages
a new ELBO-based auxiliary loss and incorporates an induc-
tive bias into the structure of the policy network, taking
advantage of our prior knowledge that an inference step is
required for an optimal solution.

We compared DVRL to an RNN-based architecture and found
that we consistently outperform it on a diverse set of tasks,
including a number of Atari games modified to have partial
observability and stochastic transitions.

We also performed several ablation studies showing the
necessity of using an ensemble of particles and of joint
optimisation of the ELBO and RL objective. Furthermore,
the results support our claim that the latent state in DVRL
approximates a belief distribution in a learned model.

Access to a belief distribution opens up several interesting
research directions. Investigating the role of better gen-
eralisation capabilities and the more powerful latent state
representation on the policy performance of DVRL can give
rise to further improvements. DVRL is also likely to benefit
from more powerful model architectures and a disentangled
latent state. Furthermore, uncertainty in the belief state and
access to a learned model can be used for curiosity driven
exploration in environments with sparse rewards.
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