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a b s t r a c t

A large set of the explainable Artificial Intelligence (XAI) literature is emerging on feature relevance
techniques to explain a deep neural network (DNN) output or explaining models that ingest image
source data. However, assessing how XAI techniques can help understand models beyond classification
tasks, e.g. for reinforcement learning (RL), has not been extensively studied. We review recent works
in the direction to attain Explainable Reinforcement Learning (XRL), a relatively new subfield of
Explainable Artificial Intelligence, intended to be used in general public applications, with diverse
audiences, requiring ethical, responsible and trustable algorithms. In critical situations where it is
essential to justify and explain the agent’s behaviour, better explainability and interpretability of
RL models could help gain scientific insight on the inner workings of what is still considered a
black box. We evaluate mainly studies directly linking explainability to RL, and split these into two
categories according to the way the explanations are generated: transparent algorithms and post-hoc
explainability. We also review the most prominent XAI works from the lenses of how they could
potentially enlighten the further deployment of the latest advances in RL, in the demanding present
and future of everyday problems.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

During the past decade, Artificial Intelligence (AI), and by
xtension Machine Learning (ML), have seen an unprecedented
ise in both industry and research. The progressive improve-
ent of computer hardware associated with the need to process

arger and larger amounts of data made these underestimated
echniques shine under a new light. Reinforcement Learning (RL)
ocuses on learning how to map situations to actions, in order to
aximize a numerical reward signal [1]. The learner is not told
hich actions to take, but instead must discover which actions
re the most rewarding by trying them. Reinforcement learn-
ng addresses the problem of how agents should learn a policy
hat take actions to maximize the cumulative reward through
nteraction with the environment [2].

Recent progress in Deep Learning (DL) for learning feature rep-
esentations has significantly impacted RL, and the combination
f both methods (known as deep RL) has led to remarkable results
n a lot of areas. Typically, RL is used to solve optimization prob-
ems when the system has a very large number of states and has a
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complex stochastic structure. Notable examples include training
agents to play Atari games based on raw pixels [3,4], board
games [5,6], complex real-world robotics problems such as ma-
nipulation [7] or grasping [8] and other real-world applications
such as resource management in computer clusters [9], network
traffic signal control [10], chemical reactions optimization [11] or
recommendation systems [12].

The success of Deep RL could augur an imminent arrival in
the industrial world. However, like many Machine Learning al-
gorithms, RL algorithms suffer from a lack of explainability. This
defect can be highly crippling as many promising RL applications
(defence, finance, medicine, etc.) need a model that can explain
its decisions and actions to human users [14] as a condition to
their full acceptation by society. Furthermore, deep RL models are
complex to debug for developers, as they rely on many factors:
environment (in particular the design of the reward function),
observations encoding, large DL models and the algorithm used
to train the policy. Thus, an explainable model could aid fixing
problems quicker and drastically speed up new development
in RL methods. Those last two points are the main arguments
in favour of the necessity of explainable reinforcement learning
(XRL).

While explainability starts being well developed for standard
ML models and neural networks [15–17], the particular domain
of RL has yet many intricacies to be better understood: both in

terms of its functioning, and in terms of conveying the decisions
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Table 1
Target audience in XAI. This table shows the different objectives of explainability in Machine Learning models for different audience
profiles.
Source: Inspired from the diagram presented in Barredo Arrieta et al. [13].
Target audience Description Explainability purposes Pursued goals

Experts Domain experts, model
users (e.g. medical
doctors, insurance
agents)

Trust the model itself,
gain scientific knowledge

Trustworthiness,
causality, transferability,
informativeness,
confidence, interactivity

Users Users affected by model
decisions

Understand their
situation, verify fair
decisions.

Trustworthiness,
informativeness, fairness,
accessibility,
interactivity, privacy
awareness

Developers Developers, researchers,
data scientists, product
owners...

Ensure and improve
product efficiency,
research, new
functionalities...

Transferability,
informativeness,
confidence

Executives Managers, executive
board members...

Assess regulatory
compliance, understand
corporate AI
applications...

Causality,
informativeness,
confidence

Regulation Regulatory
entities/agencies

Certify model
compliance with the
legislation in force,
audits, . . .

Causality,
informativeness,
confidence, fairness,
privacy awareness
of an RL model to different audiences. The difficulty lies in the
very recent human-level performance of deep RL algorithms and
by their complexity, normally parameterized with thousands if
not millions of parameters [18]. The present work intends to
provide a non-exhaustive state-of-the-art review on explainable
reinforcement learning, highlighting the main methods that we
envision most promising. In the following, we will briefly recall
some important concepts in XAI.

1.1. Explainable AI: Audience

Explaining a Machine Learning model may involve differ-
nt goals: trustworthiness, causality, transferability, informative-
ess, fairness, confidence, accessibility, interactivity and privacy
wareness. These goals have to be taken into account while
xplaining a model because the expected type of explanation
ay differ, depending on the pursued objective. For example,
saliency map explaining what is recognized as a dog on an

nput image does not tell us much about privacy awareness. In
ddition, each goal may be a dimension of interest, but only
or a certain audience (the public to whom the explanations
ill be addressed). Indeed, the transferability of a model can
e significative for a developer, since he/she can save time by
raining only one model for different tasks, while the user will
ot be impacted, if not aware, by this aspect.
The understandability of an ML model therefore depends on

ts transparency (its capacity to be understandable by itself) but
lso on human understanding. According to these considerations,
t is essential to take into account the concept of audience, as
the intelligibility and comprehensibility of a model is dependent
on the goals and the cognitive skills of its users. Barredo Arri-
eta et al. [13] discuss these aspects with additional details (see
Table 1).

1.2. Evaluating explanations

The broad concept of evaluation is based on metrics aiming
to compare how well a technique performs compared to another.
In the case of model explainability, metrics should evaluate how
well a model fits the definition of explainable and how well

performs in a certain aspect of explainability.

2

Explanation evaluation in XAI has proven to be quite a chal-
lenging task. First because the concept of explainability in Ma-
chine Learning is not well or uniformly accepted by the com-
munity and there is not a clear definition and thus, not a clear
consensus on which metrics to use. Secondly because an ex-
planation is relative to a specific audience, which is sometimes
difficult to deal with (in particular when this specific audience
is composed of domain experts who can be hard to involve in
a testing phase). Thirdly, because the quality of an explanation
is always qualitative and subjective, since it depends on the
audience, the pursued goal and even the human variability as
two people can have a different level of understandability for
the same explanation. That is why user studies are so popular
to evaluate explanations as it makes possible to convert quali-
tative evaluations into quantitative ones, by asking questions on
the accuracy and clarity of the explanation such as ‘‘Does this
explanation allow you to understand why the model predicted
that this image is a dog? Did the context helped the model?’’...
etc. Generally in XAI, there is only a single model to explain at
a time; however, it is more complicated in XRL, as we generally
want to explain a policy, or ‘‘Why the agent took action x in state
s?’’.

Doshi-Velez et al. [19] propose an attempt to formulate some
approaches to evaluate XAI methods. The authors introduce three
main levels to evaluate the quality of the explanations provided
by an XAI method, as summarized in Table 2.

A common example of evaluation of an application level or hu-
man level task is to evaluate the quality of the mental model built
by the user after seeing the explanation(s). Mental models can
be described as internal representations, built upon experiences,
and which allow to mentally simulate how something works in
the real world. Hoffman et al. [20] propose to evaluate mental
models by 1. Asking post-task questions on the behaviour of the
agent (such as ‘‘How does it work?’’ or ‘‘What does it achieve?’’)
and 2. Asking the participants to make predictions on the agent’s
next action. These evaluations are often done using Likert scales.

1.3. Organization of this work

In this survey, we first introduce XAI and its main challenges
in Section 1. We then review the recent literature in XAI applied
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Table 2
Three main levels for evaluating the explanations provided by an XAI method.
Source: Inspired from explanations provided in Doshi-Velez et al. [19].
Level of evaluation Type of task Required humans Modus Operandi

Application level Real task Domain expert Put the explanation into the product and have
it tested by the end user.

Human level Simplified task Layperson Carry out the application level experiments
with laypersons as it makes the experiment
cheaper and it is easier to find more testers.

Function level Proxy task No human
required

Uses a proxy to evaluate the explanation
quality. Works best when the model class
used has already been evaluated by someone
else in human level. For instance, a proxy for
decision trees can be the depth of the tree.
to reinforcement learning in Section 2. In Section 3, we discuss
the different approaches employed in the literature. Finally, we
conclude in Section 4 with some directions for future research.

The key contributions of this paper are as follows:

• A recent state of the art on Explainability in the latest
Reinforcement Learning models.

• A broad categorization of explainable RL (XRL) methods.
• Discussion and future work recommendations.

We hope that this work will give more visibility to existing
RL methods, while helping developing new ideas in this field,
ccounting for different audiences involved.

. XAI in RL: State of the art and reviewed literature

We reviewed the state of the art on XRL and summarized it in
able 3. This table presents, for each paper, the task(s) for which
n explanation is provided, the employed RL algorithms (whose
lgorithms glossary can be found in the A), and the provided
ype of explanations, i.e.: based on images, diagrams (graphical
omponents such as bar charts, plots or graphs), or text. We
lso present the level of the provided explanation (local if it
xplains only predictions, global if it explains the whole model),
nd the audience concerned by the explanation, as discussed in
ection 1.1.
In Table 3 we summarized the literature focusing on ex-

lainable fundamental RL algorithms. However, we also reviewed
rticles about state of the art XAI techniques that can be used in
he context of current RL which we did not include in Table 3.
ext, we will describe the main ideas provided by these papers
hich can help bring explainability in RL. It is possible to classify
ll recent studies in two main categories: transparent methods
nd Post-Hoc explainability according to the XAI taxonomies in
arredo Arrieta et al. [13]. On the one hand, inherently trans-
arent algorithms include by definition every algorithm which is
nderstandable by itself, such as a decision-trees. On the other
and, Post-Hoc explainability includes all methods that provide
xplanations of an RL algorithm after its training, such as SHAP
SHapley Additive exPlanations) [16] or LIME [15] for standard ML
odels. Reviewed papers are referenced by type of explanation in
ig. 1.

.1. Transparent algorithms

Transparent algorithms are well known and used in stan-
ard Machine Learning (e.g., linear regression, decision trees or
ule-based systems). Their strength lie in the fact that they are
esigned to have a transparent architecture that makes them
xplainable by themselves, without the need of any external
rocessing. However, it is quite different for RL, as standard DRL
lgorithms (e.g., DQN, PPO, DDPG, A2C...) are not transparent by
3

Fig. 1. Taxonomy of the reviewed literature identified for bringing explainability
to RL models. References in orange, purple, and light blue correspond to XAI
techniques using images, text or diagrams, respectively.

nature. In addition, the large majority of studies related to trans-
parency in XRL chose to build algorithms targeting only a specific
task. Nonetheless, most of the time and contrary to standard
Machine Learning models, transparent RL algorithms can achieve
state of the art performance in these specific tasks [21,22,26].

2.1.1. Explanation through representation learning
Representation learning algorithms focuses on learning ab-

stract features that characterize data, in order to make it easier
to extract useful information when building predictors [37,38].
These learned features have the advantage of having low dimen-
sionality, which generally improves training speed and general-
ization of Deep Learning models [23,37,39].

In the context of RL, learning representations of states, ac-
tions or policy can be useful to explain a RL algorithm, as these
representations can bring some clues on the functioning of the
algorithm. Indeed, State Representation Learning (SRL) [37] is a
particular type of representation learning that aims at building a
low-dimensional and meaningful representation of a state space,
by processing high-dimensional raw observation data (e.g., learn
a position (x, y) from raw image pixels). This enables to capture
the variations in the environment influenced by the agent’s ac-
tions and thus, extrapolate explanations. SRL can be especially
useful in RL for robotics and control [23,40–43], and can help to
understand how the agent interprets the observations and what
is relevant to learn to act, i.e., actionable or controllable fea-
tures [39]. Indeed, the dimensionality reduction induced by SRL,
coupled with the link to the control and possible disentanglement
of variation factors, could be highly beneficial to improve our
understanding capacity of the decisions made by RL algorithms
using a state representation method [37]. For example, SRL can
be used to split the state representation [23] according to the
different training objectives to be optimized before learning a
policy. This allows to allocate room for encoding each neces-
sary objective within the embedding state to be learned (in that
case, reward prediction, a reconstruction objective and an inverse
model). In this context, tools such as S-RL Toolbox [40] allow
sampling from the embedding state space (learned through SRL)
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ummary of reviewed literature on explainable RL (XRL) and deep RL (DRL).
Reference Task/Environment Decision process Algorithm(s) Explanation type

(Level)
Target

Relational Deep
RL [21]

Planning + strategy
games (Box-World/
Starcraft II)

POMDP IMPALA Images (Local) Experts

Symbolic RL with
Common
Sense [22]

Game (object retrieval) POMDP SRL+CS, DQL Images (Global) Experts

Decoupling feature
extraction from
policy
learning [23]

Robotics (grasping), and
navigation

MDP PPO Diagram (state
plot & image
slider (Local)

Experts

Explainable RL via
Reward Decompo-
sition [24]

Game (grid and landing) MDP HRA, SARSA,
Q-learning

Diagrams (Local) Experts, Users,
Executives

Explainable RL
Through a Causal
Lens [25]

Games (OpenAI
benchmark and Starcraft
II)

Both PG, DQN, DDPG,
A2C, SARSA

Diagrams, Text
(Local)

Experts, Users,
Executives

Shapley Q-value:
A Local Reward
Approach to Solve
Global Reward
Games [26]

Multiagents (Cooperative
Navigation,
Prey-and-Predator and
Traffic Junction)

POMDP DDPG Diagrams (Local) Experts

Dot-to-Dot:
Explainable HRL
For Robotic
Manipulation [27]

Robotics (grasping) MDP DDPG, HER, HRL Diagrams (Global) Experts,
Developers

Self-Educated
Language Agent
With HER For
Instruction
Following [28]

Instruction Following
(MiniGrid)

MDP Textual HER Text (Local) Experts, Users,
Developers

Commonsense and
Semantic-guided
Navigation [29]

Room navigation POMDP – Text (Global) Experts

Boolean Task
Algebra [30]

Game (grid) MDP DQN Diagrams Experts

Visualizing and
Understanding
Atari [31]

Games (Pong, Breakout,
Space Invaders)

MDP A3C Images (Global) Experts, Users,
Developers

Interestingness
Elements for XRL
through
Introspection [32,
33]

Arcade game (Frogger) POMDP Q-Learning Images (Local) Users

Composable DRL
for Robotic
Manipulation [34]

Robotics (pushing and
reaching)

MDP Soft Q-learning Diagrams (Local) Experts

Symbolic-Based
Recognition of
Contact States for
Learning Assembly
Skills [35]

Robotic grasping POMDP HMM, PAA,
K-means

Diagrams (Local) Experts

Safe
Reinforcement
Learning with
Model Uncertainty
Estimates [36]

Collision avoidance POMDP Monte Carlo
Dropout,
bootstrapping

Diagrams (Local) Experts
to allow a visual interpretation of the model’s internal state, and
pairing it with its associated input observation. Comprehensibility
is thus enhanced, more easily observing if smoothness is pre-
served in the state space, as well as whether other invariants
related to learning specific control task are guaranteed.

There are several approaches employed for SRL: reconstruct-
ng the observations using autoencoders [44,45], training a for-
ard model to predict next state [46,47], teach to an inverse
odel how to predict actions from previous state(s) [47,48] or
sing prior knowledge to constrain the state space [39,49].
4

Along the same lines, learning disentangled representations
[50–53] is another interesting idea used for unsupervised learn-
ing, which decomposes (or disentangles) each feature into nar-
rowly defined variables and encodes them as separate low-
dimensional features (generally using a Variational Autoencoders
[54]). It is also possible to make use of this concept, as well as
lifelong learning to learn more interpretable representations on
unsupervised classification tasks. In addition, one could argue
that learning through life would allow compacting and updat-
ing old knowledge with new one while preventing catastrophic
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Fig. 2. Visualization of attention weights for the Box-World task (environment created by authors of [21]), in which the agent has to open boxes to obtain either
eys or rewards. (a) The underlying graph of one example level. (b) The result of the analysis for that level, using each entity (represented as coloured pixels) along
he solution path (1–5) as the source of attention. Boxes are represented by two adjacent coloured pixels. On each box, the pixel on the right represents the box’s
ock and its colour indicates which key can be used to open it. The pixel on the left indicates the content of the box which is inaccessible while the box is locked.
rrows point to the entities that the source is attending to. The arrow’s transparency is determined by the corresponding attention weight.
ource: Reproduced with permission of Vinicius Zambaldi [21].
orgetting [55]. Thus, this is a key concept that could lead to
ore versatile RL agents, being able to learn new tasks without

orgetting the previous ones. Information Maximizing Generative
dversarial Networks (InfoGAN) [56] is another model based on
he principles of learning disentangled representations. The noise
ector used in traditional GANs is decomposed into two parts: z:

incompressible noise; and c: the latent code used to target the
salient semantic features of the data distribution. The main idea
is to feed z and c to the generator G, to maximize the mutual
information between c and G(z, c), in order to assure that the
nformation contained in c is preserved during the generation
rocess. As a result, the InfoGAN model is able to create an
nterpretable representation via the latent code c (i.e., the values
changing according to shape and features of the input data).

Some work has been done to learn representations by com-
bining symbolic AI with deep RL in order to facilitate the use of
background knowledge, the exploitation of learnt knowledge, and
to improve generalization [57–60]. Consequently, it also improves
the explainability of the algorithms, while preserving state-of-
the-art performance.

Zambaldi et al. [21] propose making use of Inductive Logic
Programming and self-attention to represent states, actions and
policies using first order logic, using a mechanism similar to
graph neural networks and more generally, message passing com-
putations [61–64]. In these kind of models entity–entity relations
are explicitly computed when considering the messages passed
between connected nodes of the graph as shown in Fig. 2. Self-
attention is used here as a method to compute interactions be-
tween these different entities (i.e. relevant pixels in a RGB image
for the example from [21]), and thus perform non-local pairwise
relational computations. This technique allows an expert to vi-
sualize the agent’s attention weights associated to its available
actions and interpret how to improve the understanding of its

strategy.

5

Another work that aims to incorporate common sense to the
agent, in terms of symbolic abstraction to represent the problem,
is in [22]. This method subdivides the world state representation
into many sub-states, with a degree of associated importance
based on how far the object is from the agent. This helps un-
derstand the relevance of the actions taken by the agent by
determining which sub-states were chosen.

2.1.2. Simultaneous learning of the explanation and the policy
While standard DRL algorithms struggle to provide explana-

tions, those can be tweaked to learn simultaneously both policy
and explanation. Thus, explanations become a learned component
of the model. These methods are recommended on specific prob-
lems where it is possible to introduce knowledge, such classifying
rewards by types, adding relationships between states, etc... Thus,
tweaking the algorithm to introduce some task knowledge and to
learn explanations generally also improves performance. A gen-
eral notion is that the knowledge gained from the auxiliary task
objective must be useful for downstream tasks. In this direction,
Juozapaitis et al. [24] introduced reward decomposition, whose
main principle is to decompose the reward function into a sum
of meaningful reward types. Authors used reward decomposition
to improve performance on Cliffworld and Starcraft II, where
each action can be classified according to its type. This method
consists of using a custom decomposed reward DQN by defining
a vector-valued reward function, where each component is the
reward for a certain type so that actions can be compared in
terms of trade-offs among the types. In the same way, the Q-
function is also vector valued and each component gives action
values that account for only a reward type. The sum of each
of those vector-valued functions gives the overall Q or reward
function. Learning multiple Q-functions, one for each type of
reward, allows the model to learn the best policy while also
learning the explanations (i.e. the type of reward that the agent
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Fig. 3. Left Reward Decompositions for DQN. Right Hybrid Reward Architecture (HRA) at cell (3,4) in Cliffworld. HRA predicts an extra ‘‘gold’’ reward for actions
hich do not lead to a terminal state.
ource: Reproduced with permission of Zoe Juozapaitis [24].
anted to maximize by his action, illustrated on Fig. 4). They
ntroduce the concept of Reward Difference Explanation (RDX, in
ig. 3) which enables to understand the reasons why an action
as an advantage (or disadvantage) over another. They also define
inimal Sufficient Explanations (MSX, See Fig. 4), in order to help
umans identify a small set of the most important reasons why
he agent choose specific actions over another. MSX+ and MSX-
re sets of critical positive and negative reasons (respectively) for
he actions preferred by the agent.

While reward decompositions help to understand the agent
hoice preferences between several actions, minimal sufficient
xplanations are used to help selecting the most important re-
ard decompositions. Other works that facilitate the explainabil-

ty of RL models by using reward-based losses for more inter-
retable RL are in [47,48,65].
In the same vein, Madumal et al. [25] use the way humans

nderstand and represent knowledge through causal relation-
hips and introduce an action influence model: a causal model
hich can explain the behaviour agents using causal explana-
ions. Structural causal models [66] represent the world using
andom variables, some of which might have causal relationships,
hich can be described thanks to a set of structural equations.

n this work, structural causal models are extended to include
ctions as part of the causal relationships. An action influence
odel is a tuple represented by the state–actions ensemble and

he corresponding set of structural equations. The whole process
s divided into 3 phases:

• Defining the qualitative causal relationships of variables as
an action influence model.

• Learning the structural equations (as multivariate regression
models during the training phase of the agent).

• Generating explanations, called explanans, by traversing the
action influence graph (see Fig. 5) from the root to the leaf
reward node.

This kind of models allow encoding cause–effect relations
etween events (actions and states) as shown by the graph fea-
ured in Fig. 5. Thus, they can be used to generate explana-
ions of the agent behaviour (‘‘why’’ and ‘‘why not’’ questions),
ased on knowledge about how actions influence the environ-
ent. Their method was evaluated through a user study showing

hat, compared to video game playing without any explanations
nd relevant variable explanations, this model performs signifi-
antly better on (1) task prediction and (2) explanation goodness.
owever, trust was not shown to be significantly improved.
Authors of [36] also learn explanations along with the model

olicy on pedestrians collision avoidance tasks. In this paper,
6

Fig. 4. Top Minimal Sufficient Explanations (MSX) (fire down engine action vs.
do nothing action) for decomposed reward DQN in Lunar Lander environment
near landing site. The shaping rewards dominate decisions. Bottom RDX (noop
vs. fire-main-engine) for HRA in Lunar Lander before a crash. The RDX shows
that noop is preferred to avoid penalties such as fuel cost.
Source: Reproduced with permission of Zoe Juozapaitis [24].

an ensemble of LSTM networks was trained using Monte Carlo
Dropout [67] and bootstrapping [68] to estimate collision prob-
abilities and thus predict uncertainty estimates to detect novel
observations. The magnitude of those uncertainty estimates was
shown to reveal novel obstacles in a variety of scenarios, indi-
cating that the model knows what it does not know. The result
is a collision avoidance policy that can measure the novelty of
an observation (via model uncertainty) and cautiously avoids
pedestrians that exhibit unseen behaviour. Measures of model
uncertainty can also be used to identify unseen data during
training or testing. Policies during simulation demonstrated to
be more robust to novel observations and take safer actions
than an uncertainty-unaware baseline. This work also responds
to the problem of safe reinforcement learning [69], whose goal is
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Fig. 5. Action influence graph of a Starcraft II agent. The causal chain (explanation) for action As is depicted in bold arrows and the extracted explanan (subset of
auses given the explanation) is shown as darkened nodes. The counterfactual action (why not Ab) explanan is shown as greyed node (B). Here, As is the explanandum,
he action for which the user needs explanation. Thus, we can answer the question ‘‘Why not build_barrack (Ab)?’’. Indeed, the explanation provided by the graph
n bold arrows is: ‘‘Because it is more desirable to do action build_supply_depot (As) to have more Supply Depots as the goal is to have more Destroyed Units (Du) and
estroyed Buildings (Db)’’.
ource: Reproduced with permission of [25].
o ensure reasonable system performance and/or respect safety
onstraints also at the deployment phase.
Some work has also been made to explain multiagent RL.
ang et al. [26] developed an approach named Shapley Q-values
eep Deterministic Policy Gradient (SQDDPG) to solve global
eward games in a multiagent context based on Shapley val-
es and DDPG. The proposed approach relies on distributing
he global reward more efficiently across all agents. They show
hat integrating Shapley values into DDPG enables to share the
lobal reward between all agents according to their contribu-
ions: the more the agent contributes, the more reward it will
et. This contrasts to the classical shared reward approach, which
ould cause inefficient learning by assigning rewards to an agent
ho contributed poorly. The experiments showed that SQDDPG
resents faster convergence rate and fairer credit assignment in
omparison with other algorithms (i.e. IA2C, IDDPG, COMA and
ADDPG). This method allows to plot credit assignment to each
gent, which can explain how the global reward is divided during
raining and what agent contributed the most to obtain the global
eward (see Fig. 6).

.1.3. Explanation through hierarchical goals
Methods based on Hierarchical RL [71] and sub-task decom-

osition [72] consist of a high level agent dividing the main goal
nto sub-goals for a low-level agent, which follows them one
y one to perform the high-level task. By learning what sub-
oals are optimal for the low-level agent, the high-level agent
orms a representation of the environment that is interpretable
y humans. Often, Hindsight Experience Replay (HER) [73] is used
n order to ignore whether or not goals and sub-goals have been
eached during an episode and to extract as much information as
ossible from past experience.
Beyret et al. [27] used this kind of methods along with HER

or robotic manipulation (grasping and moving an item). The high
evel agent learns which sub-goals can make the low level agent
each the main goal while the low level agent learns to maximize
he rewards for these sub-goals. The high-level agent provides
representation of the learned environment and the Q-values
ssociated, which can be represented as heat maps as shown in
ig. 7.
Based on the same ideas, Cideron et al. [28] proposed Textual

ierarchical Experience Replay (THER) which extends the HER
xplanation to a natural language setting, allowing to learn from
7

past experiences and to map goals to trajectories without the
need of an external expert. The mapping function labels un-
successful trajectories by automatically predicting a substitute
goal. THER is composed of two models: the instruction generator
which outputs a language encoding of the final state, and an
agent model which picks an action given the last observations
and the language-encoded goal. The model learns to encode goals
and states via natural language, and thus can be interpreted by a
human operator (Fig. 8).

Another interesting work finds inspiration in human
behaviour to improve generalization on a room navigation task,
just like common sense and semantic understanding are used
by humans to navigate unseen environments [29]. The entire
model is composed of three parts: (1) a semantically grounded
navigator used to predict the next action. (2) a common sense
planning module, used for route planning. It predicts the next
room, based on the observed scene, helps finding intermediate
targets, and learns what rooms are near the current one. (3) the
semantic grounding module used to recognize rooms; it allows
the detection of the current room and incorporates semantic
understanding by generating questions about what the agent
saw (’’Did you see a bathroom?’’). Self-supervision is then used
for fine tuning on unseen environment. The explainability can
be brought from the outputs of all parts of the entire model.
We can get information about what room is detected by the
agent, what are the next rooms targeted (sub-goals), what are
the rooms predicted around the current room and what are the
rooms already seen by the agent.

An original idea proposed by Tasse et al. [30] consists of
making an agent learn basic tasks and then allow it to perform
new ones by composing the tasks previously learned in a boolean
formula (i.e., with conjunctions, disjunctions and negations). The
main strength of this method is that the agent is able to perform
new tasks without the necessity of a learning phase. From an
XRL point of view, the explainability comes from the fact that the
agent is able to express its actions as boolean formulas, which are
easily readable by humans.

2.2. Post-Hoc explainability

Post-Hoc explainability refers to explainability methods that
rely on an analysis done after the RL algorithm finishes its training
and execution. In other terms, it is a way of ‘‘enhancing’’ the
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Fig. 6. Credit assignment to each predator for a fixed trajectory in prey and predator task (Multiagent Particles environment [70]). Left figure: Trajectory sampled
y an expert policy. The square represents the initial position whereas the circle indicates the final position of each agent. The dots on the trajectory indicate each
gent’s temporary positions. Right figures: normalized credit assignments generated by different multiagent RL algorithms according to this trajectory. SQDDPG
resents fairer credit assignments in comparison with other methods.
ource: Reproduced with permission of Jianhong Wang [26].
Fig. 7. Setup with initial state and goal diagonally opposed on the table. The
eat maps show the value of the different areas (highest in yellow) for the
igh-level agent to predict a sub-goal. Black squares represent the position
f the cube, the red circle is the end goal. Thus, the low-level agent will
ave a succession of sub-goals (e.g. multiple actions that the robotic arm must
erform such as moving or opening its pinch) that will ultimately lead to the
chievement of the high-level goal (i.e. grasping the red ball).
ource: Reproduced with permission of [27].
8

Fig. 8. MiniGrid environment [74], where the agent is instructed through a
textual string to pick up an object and place it next to another one. The model
learns to represent the achieved goal (e.g. ‘‘Pick the purple ball’’) via language.
As this achieved goal differs from the initial goal (‘‘Pick the red ball’’), the goal
mapper relabels the episode, and both trajectories are appended to the replay
buffer.
Source: Reproduced with permission of M. Seurin [28].

considered RL algorithm from a black box to something that
is somewhat explainable. Most Post-Hoc methods encountered
were used in a perception context, i.e., when the data manip-
ulated by the RL algorithm consisted of visual input such as
images.

2.2.1. Explanation through saliency maps
When an RL algorithm is learning from images, it can be

useful to know which elements of those images hold the most
relevant information (i.e., the salient elements). These elements
can be detected using saliency methods that produce saliency
maps [17,75]. In most cases, a saliency or heat map consists of
a filter applied to an image that will highlight the areas salient
for the agent.

A major advantage of saliency maps is that it can produce
elements that are easily interpretable by humans, even non-
experts. Of course, the interpreting difficulty of a saliency map
greatly depends on the saliency method used to compute that
map and other parameters such as the colour scheme or the high-
lighting technique. A disadvantage is that they are very sensitive
to different input variations, and schemes to debug such visual
explanation may not be straightforward [76].

A very interesting example [31], introduces a new perturba-
tion-based saliency computation method that produces crisp and
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Fig. 9. Comparison of Jacobian saliency (left) first introduced by Simonyan et al. [77] to the authors’ perturbation-based approach (right) in an actor–critic model.
ed indicates saliency for the critic; blue is saliency for the actor.
ource: Reproduced with permission of Sam Greydanus [31].
asily interpretable saliency maps for RL agents playing OpenAI
ym environment Atari 2600 games with Asynchronous Actor–
ritic [78]. The main idea is to apply a perturbation on the
onsidered image that will remove information from a specific
ixel without adding new information (by generating an inter-
olation from a Gaussian blur of the same image). Indeed, this
erturbation can be interpreted as adding spatial uncertainty to
he region around its point of application. This spatial uncertainty
an help understand how removing information in a specific area
f the input image affects the agent’s policy, and is quantified
ith a saliency metric S. The saliency map is then produced by
omputing S(i, j) for every pixel (i, j) of the input image, leading
o images such as those in Fig. 9.

However, saliency methods are not a perfect solution in every
ituation, as pointed out in [79,80]. They need to respect a certain
umber of rules, such as implementation invariance or input
nvariance in order to be reliable, especially when it comes to
heir relation with either the model or the input data.

.2.2. Explanation through interaction data
In a more generic way, the behaviour of an agent can be

xplained by gathering data from its interaction with the envi-
onment while running, and analysing it in order to extract key
nformation. For instance, Caselles-Dupré et al. demonstrate that
ymmetry-based disentangled representation learning requires
nteraction and not only static perception [81].

This idea is exploited by Sequeira et al. [33] where interaction
s the core basis upon which their Interestingness Framework is
uilt. This framework relies on introspection, conducted by the
utonomous RL agents: the agent extracts interestingness elements
hat denote meaningful interactions from their history of inter-
ction with the environment. This is done using interaction data
ollected by the agent that is analysed using statistical methods
rganized in a three-level introspection analysis: level 0: Environ-
ent analysis, level 1: Interaction analysis; level 3: Meta-analysis.
rom these interestingness elements, it is then possible to generate
isual explanations (in the form of videos compiling specific high-
ight situations of interest in the agent’s behaviour), where the
ifferent introspection levels and their interconnections provide
ontextualized explanations (see Fig. 10).
The authors applied their framework to the game Frogger and

sed it to generate video highlights of agents that were included
9

in a user study. The latter showed that no summarizing technique
among those used to generate highlight videos is adapted to all
types of agents and scenarios. A related result is that agents
having a monotonous, predictable performance will lack the va-
riety of interactions needed by the interestingness framework
to generate pertinent explanations. Finally, counter-intuitively,
highlighting all different aspects of an agent’s interactions is not
the best course of action, as it may confuse users by consecutively
showing the best and poorest performances of an agent.

2.3. Other concepts aiding XRL

Some studies encountered do not fit in the above categories for
the main reason that they are not linked to RL or do not directly
provide explanations but nonetheless, they are interesting con-
cepts that could contribute to the creation of new XRL methods
in the future.

2.3.1. Explainability of CNNs
Although deep neural networks have exhibited superior per-

formance in various tasks, their interpretability is always their
Achilles’ heel. Since CNNs are still considered black boxes, many
recent research papers focus on providing different levels and
notions of explanations to make them more explainable.

As many RL models harness visual input DL models (for in-
stance, when processing pixel observations), they could profit
from better explainability of these algorithms. That way, the
complete block of a CNN associated to learn a policy, would be
explainable as whole. In addition, some techniques used in the
visual domain, such as representation disentanglement could be
relevant to apply in RL. Among the approaches detailed by Zhang
et al. [82], one of the most promising aims at creating disentan-
gled (interpretable) representations of the conv-layers of these
networks [83,84], as well as end-to-end learning of interpretable
networks, working directly with comprehensible patterns, which
are also a trending angle [85].

Explaining when, how, and under which conditions catas-
trophic forgetting [86] or memorizing of datasets occurs is an-
other relevant aspect of life-long or continual learning [55] in
DNNs yet not fully understood. An interesting method towards
this vision is Learning Without Memorizing (LwM) [87], an exten-
sion of Learning Without Forgetting Multi-Class (LwF-MC) [88]



A. Heuillet, F. Couthouis and N. Díaz-Rodríguez Knowledge-Based Systems 214 (2021) 106685

a
t
l
t
m
o
w
l
m
b
l

w
i
s
f
b
e
n

2

(
o
m
i
c
q
m
l
m
p
r
w
a
m
c
f
h
o
b
b
o
c
c
b
e
a
c
h

r
o
s
t
t

Fig. 10. The interestingness framework. The introspection framework analyses interaction data collected by the agent and identifies interestingness elements of the
interaction history. These elements are used by an explanation framework to expose the agent’s behaviour to a human user.
Source: Reproduced with permission from Pedro Sequeira [33].
pplied to image classification. This model is able to incremen-
ally learn new classes without forgetting classes previously
earned and without storing data related them. The main idea is
hat at each step, a new model, the student, is trained to incre-
entally learn new classes, while the previous one, the teacher,
nly has knowledge of the base classes. By improving LwF-MC
ith the application of a new loss called Attention Distillation

oss, LwM tries to preserve base classes knowledge across all
odels iterations. This new loss produces attention maps that can
e studied by a human expert in order to interpret the model’s
ogic by inspecting the areas that focus its attention.

Another approach for scene analysis aimed to build a graph
here each node represents an object detected in the scene and

s capable of building a context-aware representation of itself by
ending messages to the other nodes [89]. This makes it possible
or the network to support relational reasoning, allowing it to
e effectively transparent. Thus, users are able to make textual
nquiries about relationships between objects (e.g., ‘‘Is the plate
ext to a white bowl?’’).

.3.2. Compositionality as a proxy tool to improve understandability
Compositionality is a universal concept stating that a complex

composed) problem can be decomposed into a set of simpler
nes [90]. Thus, in the RL world, this idea can be translated into
aking an agent solve a complex task by hierarchically complet-

ng lesser ones (e.g. by first solving atomic ones as lesser tasks
ould also be complex) [91]. This provides reusability, enables
uick initialization of policies and makes the learning process
uch faster by training an optimal policy for each reward and

ater combining them. Haarnoja et al. [34] showed that maxi-
um entropy RL methods can produce much more composable
olicies. Empirical demonstrations were performed on a Sawyer
obot trained to avoid a fix obstacle and to stack Lego blocks
ith both policies combined. They introduced the Soft Q-learning
lgorithm, based on maximum entropy RL [92] and energy-based
odels [93], as well as an extension of this algorithm that enables
omposition of learned skills. This kind of methods optimizing
or compositionality does not provide a direct explanation tool;
owever compositionality can be qualitatively observed as self
rganized modules [94] and used to train multiple policies that
enefit from being combined. Compositionality may also help
etter explain each policy along the training evolution in time,
r each learned skill separately. However, it is also observed that
ompositionality may not emerge in the same manner as humans
onceptually would understand it or expect it, e.g. based on sym-
olic abstract functionality modules. Some examples in language
mergence in multi-agent RL settings show that generalization
nd acquisition speed [95] or language do not co-occur with
ompositionality, or that compositionality may not go hand in
and with language efficiency as in humans communication [96].
Distillation has also been used to learn task that are closely

elated and whose learning should improve speed up the learning
f near tasks, in DisCoRL model [97], which helps transfer from
imulation to real settings in navigation and goal based robotic
asks. We may then be able to further explain each policy along
he training evolution timeline, or each learned skill separately.
10
2.3.3. Improving trust via imitation learning
Imitation learning is a way of enabling algorithms to learn

from human demonstrations, such as teaching robots to learn
assembly skills [35,98]. While improving training time (compared
to more traditional approaches [43]), this method also allows
for better understanding of the agent’s behaviour as it learns
according to human expert actions [99]. It can also be a way to
improve trust in the model, as it behaves seemingly as a human
expert operator and can explain the basis of its decisions textually
or verbally. Moreover, when encompassing human advice during
training, it can be derived into advisable learning which further
improves user trust as the model can understand human natural
language and yields clear and precise explanations [100].

2.3.4. Transparency-oriented explanation building
Transparency has been given multiple meanings over time,

especially in robotics and AI Ethics. Theodorou et al. [101] freshly
define it as a mechanism to expose decision making that could
allow AI models to be debugged like traditional programs, as they
will communicate information about their operation in real time.
However, the relevance of this information should adapt to the
user’s technological background, from simple progress bars to
complex debug logs. An interesting concept is that an AI system
could be created using a visual editor that can help communicate
which decision will be taken in which situation (very much like
decision trees). These concepts have already been successfully
implemented in an RL setup using Temporal Difference (TD) error
to create an emotional model of an agent [102].

3. Discussion

Despite explainable deep RL being still an emerging research
field, we observed that numerous approaches were developed
so far, as detailed in Section 2. However, there is no clear-cut
method that serves all purposes. Most of the reviewed XRL meth-
ods are specifically designed to fit a particular task, often related
to games or robotics and with no straight forward extension
to other real-world RL applications. Furthermore, those methods
cannot be generalized to other tasks or algorithms as they often
make specific assumptions (e.g. on the MDP or environment
properties). In fact in XRL there can be more than one model
(as in Actor–Critic architectures) and different kinds of algo-
rithms (DQN, DDPG, SARSA...) each with its own particularities.
Moreover, there exists a wide variety of environments where
each brings its own constraints. The necessity to adapt to the
considered algorithm and environment means that it is hard to
provide a holistic or generic explainability method. Thus, in our
opinion, Shapley value-based methods [16,26] can be considered
as an interesting lead to contribute to this goal. Shapley values
could be used to explain the roles taken by agents when learning
a policy to achieve a collaborative task but also to detect defects
in training agents or in the data fed to the network. In addition, as
a post-hoc explainability method, it may be possible to generalize
Shapley value computation to numerous RL environments and
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odels in the same way it was done with SHAP [16] for other
lack boxes Deep Learning classifiers or regressors.
Meanwhile, the research community would benefit if more

lobal-oriented approaches, which do not focus on a particular
ask or algorithm, were developed in the future, as it has al-
eady been done in general XAI, with for instance LIME [15] or
HAP [16].
Moreover, some promising approaches to bring explainability

o RL include representation learning related concepts such as
indsight Experience Replay, Hierarchical RL and self-attention.
owever, despite the ability of those concepts to improve perfor-
ance and interpretability in a mathematical sense (in particular

epresentation learning), they somehow lack concrete explana-
ions targeted to end users, as they mostly target technical do-
ain experts and researchers. This is a key element to further
evelop and allow the deployment of RL in the real world and
o make algorithms more trustable and understandable by the
eneral public.
The state of the art shows there is still room for progress to

e made to better explain deep RL models in terms of differ-
nt invariants preservation and other common assumptions of
isentangled representation learning [103,104].

. Conclusion and future work

We reviewed and analysed different state of the art
pproaches on RL and how XAI techniques can elucidate and
nform their training, debugging and communication to different
takeholder audiences.
We focused on agent based RL in this work, however, ex-

lainability in RL involving humans (e.g. in collaborative problem
olving [105]) should involve explainability methods to better
ssess when robots are able to perform the requested task, and
hen uncertainty is an indicator of better relying a task to a
uman. Equally important is to evaluate and explain other aspects
n reinforcement learning, e.g. formally explaining the role of cur-
iculum learning [106], quality diversity or other human-learning
nspired aspects of open-ended learning [42,107,108]. Thus, more
heoretic bases to serve explainable by design DRL are required.
he future development of post-hoc XAI techniques should adapt
o the requirements to build, train, and convey DRL models.
urthermore, it is worth noting that all presented methods de-
ompose final prediction into additive components attributed to
articular features [109], and thus interaction between features
hould be accounted for, and included in the explanation elabo-
ation. Since most presented strategies to explain RL have mainly
onsidered discrete model interpretations for explaining a model,
s advocated in [110], continuous formulations of the proposed
pproaches (such as Integrated Gradients [111] based on the
ontinuous extension of Shapley value, Aumann–Shapley value
ost-sharing technique) should be devised in the future in RL
ontexts.
We believe the reviewed approaches and future extensions

ackling the identified issues will likely be critical in the de-
anding future applications of RL. We advocate for the needs of

argeting in the future more diverse audiences (developer, tester,
nd-user, general public) not yet approached in the development
f XAI tools. Only this way we will produce actionable expla-
ations and more comprehensive frameworks for explainable,
rustable and responsible RL that can be deployed in practice.
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Appendix A

A.1. Glossary

• A2C: Asynchronous Actor–Critic [78]
• AI: Artificial Intelligence
• COMA: Counterfactual multi-agent [112]
• CNN: Convolutional Neural Network [113]
• DDPG: Deep Deterministic Policy Gradient [114]
• DL: Deep Learning
• DRL: Deep Reinforcement Learning
• DQN: Deep Q Network [3]
• GAN: Generative Adversarial Network [115]
• HER: Hindsight Experience Replay [73]
• HMM: Hidden Markov Model
• HRA: Hybrid Reward Architecture [71]
• HRL: Hierarchical Reinforcement Learning [72]
• IDDPG: Independent DDPG [114]
• MADDPG: Multiagent DDPG [70]
• MDP: Markov Decision Process
• Machine Learning: Machine Learning
• POMDP: Partially Observable Markov Decision Process
• PPO: Proximal Policy Optimization [116]
• R-CNN: Region Convolutional Neural Network [117]
• RL: Reinforcement Learning
• SARSA: State Action Reward State Action [118]
• SRL: State Representation Learning [37]
• VAE: Variational Auto-Encoder [54]
• XAI: Explainable Artificial Intelligence
• XRL: Explainable Reinforcement Learning
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