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Abstract

A key advance in learning generative models is the use of
amortized inference distributions that are jointly trained with
the models. We find that existing training objectives for vari-
ational autoencoders can lead to inaccurate amortized infer-
ence distributions and, in some cases, improving the objective
provably degrades the inference quality. In addition, it has
been observed that variational autoencoders tend to ignore the
latent variables when combined with a decoding distribution
that is too flexible. We again identify the cause in existing
training criteria and propose a new class of objectives (Info-
VAE) that mitigate these problems. We show that our model
can significantly improve the quality of the variational poste-
rior and can make effective use of the latent features regard-
less of the flexibility of the decoding distribution. Through
extensive qualitative and quantitative analyses, we demon-
strate that our models outperform competing approaches on
multiple performance metrics.

Introduction
Generative models have shown great promise in modeling
complex distributions such as natural images and text (Rad-
ford, Metz, and Chintala 2015; Zhu et al. 2017; Yang et al.
2017; Li, Song, and Ermon 2017). These are directed graph-
ical models which represent the joint distribution between
the data and a set of hidden variables (features) capturing la-
tent factors of variation. The joint is factored as the product
of a prior over the latent variables and a conditional distribu-
tion of the visible variables given the latent ones. Usually a
simple prior distribution is provided for the latent variables,
while the distribution of the input conditioned on latent vari-
ables is complex and modeled with a deep network.

However, variational autoencoders have several problems.
First, the approximate inference distribution is often signif-
icantly different from the true posterior. Previous methods
have resorted to using more flexible variational families to
better approximate the true posterior distribution (Kingma,
Salimans, and Welling 2016). However we find that the
problem is rooted in the ELBO training objective itself. In
fact, we show that the ELBO objective favors fitting the
data distribution over performing correct amortized infer-
ence. When the two goals are conflicting (e.g., because of
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limited capacity), the ELBO objective tends to sacrifice cor-
rect inference to better fit (or potentially overfit) the training
data.

Another problem that has been observed is that when the
conditional distribution is sufficiently expressive, the latent
variables are often ignored (Chen et al. 2016). That is, the
model only uses a single conditional distribution component
to model the data, effectively ignoring the latent variables
and fails to take advantage of the mixture modeling capabil-
ity of the VAE. In addition, one goal of unsupervised learn-
ing is to learn meaningful latent representations, but this ob-
viously fails if the latent variables are ignored. Some so-
lutions have been proposed in (Chen et al. 2016) by limit-
ing the capacity of the conditional distribution, but this re-
quires manual and problem-specific design of the features
we would like to extract.

In this paper we propose a novel solution by framing both
problems as explicit modeling choices: we introduce new
training objectives where it is possible to weight the pref-
erence between correct inference and fitting the data distri-
bution, and specify a preference on how much the model
should rely on the latent variables. This choice is only im-
plicitly made in the traditional ELBO objective. We make
this choice explicit and generalize the ELBO objective by
adding additional terms that allow users to select their pref-
erences. Despite of the addition of seemingly intractable
terms, we find an equivalent form that can still be efficiently
optimized.

Our new family also generalizes known models including
the β-VAE (Higgins et al. 2017) and Adversarial Autoen-
coders (Makhzani et al. 2015). In addition to deriving these
models as special cases, we provide generic principles for
hyper-parameter selection that work well in all the experi-
mental settings we considered. Finally we perform extensive
experiments to evaluate our newly introduced model family,
and compare with existing models on multiple metrics of
performance such as log-likelihood, sampling quality, and
semi-supervised performance. An instantiation of our gen-
eral framework called MMD-VAE achieves better or on-par
performance on all metrics we considered. We further ob-
serve that our model can lead to better amortized inference,
and utilize the latent variables even in the presence of a very
flexible decoder.
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Variational Autoencoders
A latent variable generative model defines a joint distribu-
tion between (latent) features z ∈ Z , and inputs x ∈ X .
Usually we assume a simple prior distribution p(z) over the
features, such as Gaussian or uniform, and model the data
distribution with a complex conditional distribution pθ(x|z),
where pθ(x|z) is often parameterized with a neural network.
Suppose the true underlying distribution is pD(x) (that is
approximated by a training set), then a natural training ob-
jective is maximum (marginal) likelihood

EpD(x)[log pθ(x)] = EpD(x)[logEp(z)[pθ(x|z)]] (1)
However direct optimization of the likelihood is intractable
because computing pθ(x) =

∫
z
pθ(x|z)p(z)dz requires in-

tegration. A classic approach (Kingma and Welling 2013)
is to define an amortized inference distribution qφ(z|x) and
jointly optimize a lower bound to the log-likelihood
LELBO(x) = −DKL(qφ(z|x)||p(z)) + Eqφ(z|x)[log pθ(x|z)]

≤ log pθ(x)

We further average this over the data distribution pD(x)
to obtain the final optimization objective
LELBO = EpD(x)[LELBO(x)] ≤ EpD(x)[log pθ(x)]

Equivalent Forms of the ELBO Objective
There are several ways to equivalently rewrite the ELBO ob-
jective that will become useful in our following analysis. We
define the joint generative distribution as

pθ(x, z) ≡ p(z)pθ(x|z)
In fact we can correspondingly define a joint “inference dis-
tribution”

qφ(x, z) ≡ pD(x)qφ(z|x)
Note that the two definitions are symmetrical. In the former
case we start from a known distribution p(z) and learn the
conditional distribution on X , in the latter we start from a
known (empirical) distribution pD(x) and learn the condi-
tional distribution on Z given x. We also correspondingly
define any conditional and marginal distributions as follows:

pθ(x) =

∫
z

pθ(x, z)dz Marginal of pθ(x, z) on x

pθ(z|x) ∝ pθ(x, z) Posterior of pθ(x|z)

qφ(z) =

∫
x

qφ(x, z)dx Marginal of qφ(x, z) on z

qφ(x|z) ∝ qφ(x, z) Posterior of qφ(z|x)

For the purposes of optimization, the ELBO objective can
be written equivalently (up to an additive constant) as
LELBO ≡ −DKL(qφ(x, z)‖pθ(x, z)) (2)

= −DKL(pD(x)‖pθ(x)) (3)
− EpD(x)[DKL(qφ(z|x)‖pθ(z|x))]

= −DKL(qφ(z)‖p(z))
− Eqφ(z)[DKL(qφ(x|z)‖pθ(x|z))] (4)

We prove the first equivalence in the appendix. The second
and third equivalence are simple applications of the addi-
tive property of KL divergence. All three forms of ELBO in
Eqns. (2),(3),(4) are useful in our analysis.

Two Problems of Variational Autoencoders
Amortized Inference Failures
Under ideal conditions, optimizing the ELBO objective us-
ing sufficiently flexible model families for pθ(x|z) and
qφ(z|x) over θ, φ will achieve both goals of correctly cap-
turing pD(x) and performing correct amortized inference.
This can be seen by examining Eq. (3). This form indicates
that the ELBO objective is minimizing the KL divergence
between the data distribution pD(x) and the (marginal)
model distribution pθ(x), as well as the KL divergence be-
tween the variational posterior qφ(z|x) and the true posterior
pθ(z|x). However, with finite model capacity the two goals
can be conflicting and subtle tradeoffs and failure modes can
emerge from optimizing the ELBO objective.

In particular, one limitation of the ELBO objective is that
it might fail to learn an amortized inference distribution
qφ(z|x) that approximates the true posterior pθ(z|x). This
can happen for two different reasons:

Inherent properties of the ELBO objective: the ELBO
objective can be maximized (even to +∞ in pathologi-
cal cases) even with a very inaccurate variational posterior
qφ(z|x).

Implicit modeling bias: common modeling choices
(such as the high dimensionality of X compared to Z) tend
to sacrifice variational inference vs. data fit when modeling
capacity is not sufficient to achieve both.

We will explain in turn why these failures happen.

Good ELBO Values Do Not Imply Accurate Inference
We first provide some intuition to this phenomena, then for-
mally prove the result for a pathological case of continuous
spaces and Gaussian distributions. Finally we justify in the
experiments section that this happens in realistic settings on
real datasets (in both continuous and discrete spaces).

The ELBO objective in original form has two compo-
nents, a log likelihood (reconstruction) term LAE and a reg-
ularization term LREG:

LELBO(x) = LAE(x) + LREG(x)

≡ Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)||p(z))

Let us first consider what happens if we only optimize LAE

and not LREG. The first term maximizes the log likelihood
of observing data point x given its inferred latent variables
z ∼ qφ(z|x). Consider a finite dataset {x1, · · · , xN}. Let qφ
be such that for xi 6= xj , qφ(z|xi) and qφ(z|xj) are distri-
butions with disjoint supports. Then we can learn a pθ(x|z)
mapping the support of each qφ(z|xi) to a distribution con-
centrated on xi, leading to very large LAE (for continuous
distributions pθ(x|z) may even tend to a Dirac delta distri-
bution and LAE tends to +∞). Intuitively, the LAE compo-
nent will encourage choosing qφ(z|xi) with disjoint support
when xi 6= xj .

In almost all practical cases, the variational distribution
family for qφ is supported on the entire space Z (e.g.,
it is a Gaussian with non-zero variance, or IAF poste-
rior (Kingma, Salimans, and Welling 2016)), preventing dis-
joint supports. However, attempting to learn disjoint sup-
ports for qφ(z|xi), xi 6= xj will ”push” the mass of the
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distributions away from each other. For example, for con-
tinuous distributions, if qφ maps each xi to a Gaussian
N (µi, σi), the LAE term will encourage µi →∞, σi → 0+.

This undesirable result may be prevented if the LREG

term can counter-balance this tendency. However, we show
that the regularization term LREG is not always sufficiently
strong to prevent this issue. We first prove this fact in the
simple case of a mixture of two Gaussians. We will then
evaluate this finding empirically on realistic datasets in the
experiments section .
Proposition 1. Let X ,Z = R, and D be a dataset with
two samples {−1, 1}; let pθ(x|z) be selected from the fam-
ily of all functions µpθ, σ

p
θ that map z ∈ Z to a Gaussian

N (µpθ(z), σ
p
θ (z)) on X , and qφ(z|x) be selected from the

family of all functions µqφ, σ
q
φ that map x ∈ X to a Gaussian

N (µqφ(z), σqφ(z)) on Z . Then LELBO can be maximized to
+∞ when

µqφ(x = 1)→ +∞ µqφ(x = −1)→ −∞
σqφ(x = 1)→ 0+ σqφ(x = −1)→ 0+

and θ is optimally selected given φ. In addition the varia-
tional gap DKL(qφ(z|x)‖pθ(z|x))→ +∞ for all x ∈ D.

A proof can be found the in Appendix1. This means that
amortized inference has completely failed, even though the
ELBO objective can be made arbitrarily large. The model
learns an inference distribution qφ(z|x) that pushes all prob-
ability mass to ∞. This will become infinitely far from the
true posterior pθ(z|x) as measured by DKL.

Modeling Bias In the above example we indicated a po-
tential problem with the ELBO objective where the model
tends to push the probability mass of qφ(z|x) too far from 0.
This tendency is a property of the ELBO objective and true
for any X and Z . However this is made worse by the fact
that X is often higher dimensional compared to Z , so any
error in fitting X will be magnified compared to Z .

For example, consider fitting an n dimensional distribu-
tion N (0, I) with N (ε, I) using KL divergence, then

DKL(N (0, I),N (ε, I)) = nε2/2

As n increases with some fixed ε, the Euclidean distance be-
tween the means of the two distributions is Θ(

√
n), yet the

corresponding DKL becomes Θ(n). For natural images, the
dimensionality of X is often orders of magnitude larger than
the dimensionality of Z . Recall in Eq.(4) that ELBO is opti-
mizing both DKL(qφ(z)‖p(z)) and DKL(qφ(x|z)‖pθ(x|z)).
Because the same per-dimensional modeling error incurs a
much larger loss in X space than Z space, when the two
objectives are conflicting (e.g., because of limited modeling
capacity), the model will tend to sacrifice divergences on Z
and focus on minimizing divergences on X .

Regardless of the cause (properties of ELBO or modeling
choices), this is generally an undesirable phenomenon for
two reasons:

1) One may care about accurate inference more than gen-
erating sharp samples. For example, generative models are

1Appendix in technical report (Zhao, Song, and Ermon 2017)

often used for down stream tasks such as semi supervised
learning.

2) Overfitting: Because pD is an empirical (finite) distri-
bution in practice, matching it too closely can lead to poor
generalization (Shu et al. 2018).

Both issues are observed in the experiments section.

The Information Preference Property
Using a complex decoding distribution pθ(x|z) such as
PixelRNN/PixelCNN (van den Oord, Kalchbrenner, and
Kavukcuoglu 2016; Gulrajani et al. 2016) has been shown
to significantly improve sample quality on complex natural
image datasets. However, this approach suffers from a new
problem: it tends to neglect the latent variables z altogether,
that is, the mutual information between z and x becomes
vanishingly small. Intuitively, the reason is that the learned
pθ(x|z) is the same for all z ∈ Z , implying that the z is
not dependent on the input x. This is undesirable because a
major goal of unsupervised learning is to learn meaningful
latent features which should depend on the inputs.

This effect, which we shall refer to as the information
preference problem, was studied in (Chen et al. 2016) with a
coding efficiency argument. Here we provide an alternative
interpretation and a novel solution to this problem.

We inspect the ELBO in the form of Eq.(3), and consider
the two terms respectively. We show that both can be opti-
mized to 0 without utilizing the latent variables.
DKL(pD(x)||pθ(x)): Suppose the model family

{pθ(·|z), θ ∈ Θ} is sufficiently flexible and there ex-
ists a θ∗ such that for every z ∈ Z , pθ∗(·|z) and pD(·)
are identical. Then we select this θ∗ and the marginal
pθ∗(x) =

∫
z
p(z)pθ∗(x|z)dz = pD(x), hence this

divergence DKL(pD(x)||pθ(x)) = 0 which is optimal.
EpD(x)[DKL(qφ(z|x)||pθ(z|x))]: Because pθ∗(·|z) is the

same for every z (x is independent from z) we have
pθ∗(z|x) = p(z). Because p(z) is usually a simple distri-
bution, if it is possible to choose φ such that qφ(z|x) =
p(z),∀x ∈ X , this divergence will also achieve the optimal
value of 0.

Because LELBO is the sum of the above divergences,
when both are 0, this is a global optimum. There is no in-
centive for the model to learn otherwise, undermining our
purpose of learning a latent variable model.

The InfoVAE Model Family
In order to remedy these two problems we define a new
training objective that will learn both the correct model and
amortized inference distributions. We begin with the form of
ELBO in Eq. (4)

LELBO = −DKL(qφ(z)‖p(z))−
Ep(z)[DKL(qφ(x|z)‖pθ(x|z))]

First we add a scaling parameter λ to the divergence be-
tween qφ(z) and p(z) to increase its weight and counter-act
the imbalance between X and Z (see previous discussion).
Next we add a mutual information maximization term to en-
courage high mutual information between x and z. This en-
courages the model to use the latent code and avoids the

5887

Max

Max

Max

Max

Max

Max

Max

Max

Max



information preference problem. We arrive at the following
objective

LInfoVAE = −λDKL(qφ(z)‖p(z))−
Eq(z)[DKL(qφ(x|z)‖pθ(x|z))] + αIq(x; z) (5)

where Iq(x; z) is the mutual information between x and z
under the distribution qφ(x, z).

Even though we cannot directly optimize this objective,
we can rewrite this into an equivalent form that we can opti-
mize more efficiently (we prove this in the Appendix)

LInfoVAE ≡ EpD(x)Eqφ(z|x)[log pθ(x|z)]−
(1− α)EpD(x)DKL(qφ(z|x)||p(z))−
(α+ λ− 1)DKL(qφ(z)‖p(z)) (6)

The first two terms can be optimized by the reparameteriza-
tion trick as in the original ELBO objective. The last term
DKL(qφ(z)‖p(z)) is not easy to compute because we can-
not tractably evaluate log qφ(z). However we can obtain un-
biased samples from it by first sampling x ∼ pD, then z ∼
qφ(z|x), so we can optimize it by likelihood free optimiza-
tion techniques (Goodfellow et al. 2014; Nowozin, Cseke,
and Tomioka 2016; Arjovsky, Chintala, and Bottou 2017;
Gretton et al. 2007). In fact we may replace the term
DKL(qφ(z)‖p(z)) with anther divergence D(qφ(z)‖p(z))
that we can efficiently optimize over. Changing the diver-
gence may alter the empirical behavior of the model but we
show in the following theorem that replacing DKL with any
(strict) divergence is still correct (a divergence is strict if
D(qφ(z)‖p(z)) = 0 iff qφ(z) = p(z)). Let L̂InfoVAE be
the objective where we replace DKL(qφ(z)‖p(z)) with any
strict divergence D(qφ(z)‖p(z)).
Proposition 2. Let X andZ be continuous spaces, and α <
1, λ > 0. Given fixed mutual information I0, among the
set of qφ that satisfy Iq(x; z) = I0, L̂InfoVAE is globally
optimized if pθ(x) = pD(x) and qφ(z|x) = pθ(z|x),∀z.

Proof of Proposition 2. See Appendix.

Note that in the proposition we have the additional re-
quirement that the mutual information Iq(x; z) is bounded.
This is inevitable because if α > 0 the objective can be op-
timized to +∞ by simply increasing the mutual information
infinitely. In our experiments simply ensuring that qφ(z|x)
does not have vanishing variance is sufficient to regularize
the behavior of the model.

Relation to VAE and β-VAE: This model family gen-
eralizes several previous models. When α = 0 and λ = 1
we get back the original ELBO objective. When λ > 0 is
freely chosen, while α + λ − 1 = 0, and we use the DKL

divergences, we get the β-VAE (Higgins et al. 2017) model
family. However, β-VAE models cannot effectively trade-off
weighing of X and Z and information preference. In par-
ticular, for every λ there is a unique value of α = 1 − λ
that we can choose. For example, if we choose a large value
of λ � 1 to balance the importance of observed and latent
spaces (X andZ), we must also choose α� 0, which forces
the model to penalize mutual information. This in turn can
lead to under-fitting or ignoring the latent variables.

Relation to Adversarial Autoencoders (AAE): When
α = 1, λ = 1 and D is chosen to be the Jensen Shannon di-
vergence we get the adversarial autoencoders in (Makhzani
et al. 2015). This paper generalizes AAE, but more impor-
tantly we provide a deeper understanding of the correctness
and desirable properties of AAE. Furthermore, we charac-
terize settings when AAE is preferable compared to VAE
(i.e. when we would like to have α = 1).

Relation to Information Theoretical Analysis: Several
other lines of work analyze mutual information in latent
variable generative models from different perspectives, in-
cluding (Zhao, Song, and Ermon 2018; Alemi et al. 2017).

Our generalization introduces new parameters, but the
meaning and effect of the various parameter choices is clear.
We always select λ to a value that makes the loss on X ap-
proximately the same as the loss on Z . We also recommend
setting α = 0 when pθ(x|z) is a simple distribution, and
α = 1 when pθ(x|z) is a complex distribution and informa-
tion preference is a concern. The final degree of freedom is
the divergence D(qφ(z)‖p(z)) to use. We will explore this
topic in the next section.

Divergences Families
We consider and compare three divergences in this paper.

Adversarial Training: Adversarial autoencoders (AAE)
proposed in (Makhzani et al. 2015) use an adversarial dis-
criminator to approximately minimize the Jensen-Shannon
divergence (Goodfellow et al. 2014) between qφ(z) and
p(z). However, when p(z) is a simple distribution such as
Gaussian, there are preferable alternatives. In fact, adversar-
ial training can be unstable and slow even when we apply
recent techniques for stabilizing GAN training (Arjovsky,
Chintala, and Bottou 2017; Gulrajani et al. 2017).

Stein Variational Gradient: The Stein variational gradi-
ent (Liu and Wang 2016) is a simple and effective framework
for matching a distribution q to p by computing effectively
∇φDKL(qφ(z)||p(z)) which we can use for gradient descent
minimization of DKL(qφ(z)||p(z)). However a weakness of
these methods is that they are difficult to apply efficiently in
high dimensions. We give a detailed overview of this method
in the Appendix.

Maximum-Mean Discrepancy: Maximum-Mean Dis-
crepancy (MMD) (Gretton et al. 2007; Li, Swersky, and
Zemel 2015; Dziugaite, Roy, and Ghahramani 2015) is a
framework to quantify the distance between two distribu-
tions by comparing all of their moments. It can be efficiently
implemented using the kernel trick. Letting k(·, ·) be any
positive definite kernel, the MMD between p and q is

DMMD(q‖p) = Ep(z),p(z′)[k(z, z′)]− 2Eq(z),p(z′)[k(z, z′)]

+ Eq(z),q(z′)[k(z, z′)]

DMMD = 0 if and only if p = q.

Experiments
Variance Overestimation with ELBO training
We first perform some simple experiments on toy data and
MNIST to demonstrate that ELBO suffers from inaccurate
inference in practice, and adding the scaling term λ in Eq.(5)
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ELBO InfoVAE (λ = 500)

Figure 1: Verification of Proposition 1 where the dataset only contains two examples {−1, 1}. Top: density of the distributions
qφ(z|x) when x = 1 (red) and x = −1 (green) compared with the true prior p(z) (purple). Bottom: The “reconstruction”
pθ(x|z) when z is sampled from qφ(z|x = 1) (green) and qφ(z|x = −1) (red). Also plotted is pθ(x|z) when z is sampled from
the true prior p(z) (purple). When the dataset consists of only two data points, ELBO (left) will push the density in latent space
Z away from 0, while InfoVAE (right) does not suffer from this problem.

can correct for this. Next, we will perform a comprehensive
set of experiments to carefully compare different models on
multiple performance metrics.

Mixture of Gaussian We verify the conclusions in Propo-
sition 1 by using the same setting in that proposition. We
use a three layer deep network with 200 hidden units in each
layer to simulate the highly flexible function family. For In-
foVAE we choose the scaling coefficient λ = 500, informa-
tion preference α = 0, and divergence optimized by MMD.

The results are shown in Figure 1. It can be observed that
the predictions of the theory are reflected in the experiments:
ELBO training leads to poor inference and a significantly
over-estimated qφ(z), while InfoVAE demonstrates a more
stable behavior.

MNIST We demonstrate the problem on a real world
dataset. We train ELBO and InfoVAE (with MMD regular-
ization) on binarized MNIST with different training set sizes
ranging from 500 to 50000 images; We use the DCGAN ar-
chitecture (Radford, Metz, and Chintala 2015) for both mod-
els. For InfoVAE, we use the scaling coefficient λ = 1000,
and information preference α = 0. We choose the number
of latent features dimension(Z) = 2 to plot the latent space,
and 10 for all other experiments.

First we verify that in real datasets ELBO over-estimates
the variance of qφ(z), while InfoVAE does not (with rec-
ommended choice of λ). In Figure 2 we plot estimates for
the log determinant of the covariance matrix of qφ(z), de-
noted as log det(Cov[qφ(z)]) as a function of the size of
the training set. For standard factored Gaussian prior p(z),
Cov[p(z)] = I , so log det(Cov[p(z)]) = 0. Values above or
below zero give us an estimate of over or under-estimation
of the variance of qφ(z), which should in theory match the
prior p(z). It can be observed that the for ELBO, variance of
qφ(z) is significantly over-estimated. This is especially se-
vere when the training set is small. On the other hand, when
we use a large value for λ, InfoVAE can avoid this problem.

To make this more intuitive we plot in Figure 3 the con-
tour plot of qφ(z) when training on 500 examples. It can be
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Figure 2: log det(Cov[qφ(z)]) for ELBO vs. MMD-VAE un-
der different training set sizes. The correct prior p(z) has
value 0 on this metric, and values above or below 0 cor-
respond to over-estimation and under-estimation of the vari-
ance respectively. ELBO (blue curve) shows consistent over-
estimation while InfoVAE does not.

seen that with ELBO qφ(z) matches p(z) very poorly, while
InfoVAE matches significantly better.

To verify that ELBO trains inaccurate amortized infer-
ence we plot in Figure 4 the comparison between samples
from the approximate posterior qφ(z|x) and samples from
the true posterior pθ(z|x) computed by rejection sampling.
The same trend can be observed. ELBO consistently gives
very poor approximate posterior, while the InfoVAE poste-
rior is mostly accurate.

Finally show the samples generated by the two mod-
els in Figure 5. ELBO generates very sharp reconstruc-
tions, but very poor samples when sampled ancestrally x ∼
p(z)pθ(x|z). InfoVAE, on the other hand, generates sam-
ples of consistent quality, and in fact, produces samples of
reasonable quality after only training on a dataset of 500 ex-
amples. This reflect InfoVAE’s ability to control overfitting
and demonstrate consistent training time and testing time be-
havior.

Comprehensive Comparison
In this section, we perform extensive qualitative and quanti-
tative experiments on the binarized MNIST dataset to eval-
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Figure 3: Comparing the prior, InfoVAE qφ(z) and ELBO
qφ(z). InfoVAE qφ(z) is almost identical to the true prior,
while the ELBO qφ(z) is very far off. qφ(z) for both models
is computed by

∫
x
pDqφ(z|x) where pD is the test set.

ELBO Posterior InfoVAE Posterior

Figure 4: Comparing true posterior pθ(z|x) (green, gener-
ated by importance sampling) with approximate posterior
qφ(z|x) (blue) on testing data after training on 500 sam-
ples. For ELBO the approximate posterior is generally fur-
ther from the true posterior compared to InfoVAE. (All plots
are drawn with the same scale)

uate the performance of different models. We would like to
answer these questions:

1) Compare the models on a comprehensive set of numer-
ical metrics of performance. Also compare the stability and
training speed of different models.

2) Evaluate and compare the possible types of divergences
(Adversarial, Stein, MMD).

For all two questions, we find InfoVAE with MMD reg-
ularization to perform better in almost all metrics of perfor-
mance and demonstrate the best stability and training speed.
The details are presented in the following sections.

For models we use ELBO, Adversarial autoencoders, In-
foVAE with Stein variational gradient, and InfoVAE with
MMD (α = 1 because information preference is a concern,
λ = 1000 which can put the loss on X and Z on the same
order of magnitude). In this setting we also use a highly flex-
ible PixelCNN as the decoder pθ(x|z) so that information
preference is also a concern. Detailed experimental setup is
explained in the Appendix.

We consider multiple quantitative evaluations, including
the quality of the samples generated, the training speed and
stability, the use of latent features for semi-supervised learn-
ing, and log-likelihoods on samples from a separate test set.

Distance between qφ(z) and p(z): To measure how well
qφ(z) approximates p(z), we use two numerical metrics.
The first is the full batch MMD statistic over the full data.

reconstruction generation

Figure 5: Samples generated by ELBO vs. MMD InfoVAE
(λ = 1000) after training on 500 samples (plotting mean of
pθ(x|z)). Top: Samples generated by ELBO. Even though
ELBO generates very sharp reconstruction for samples on
the training set, model samples p(z)pθ(x|z) is very poor,
and differ significantly from the reconstruction samples, in-
dicating over-fitting, and mismatch between qφ(z) and p(z).
Bottom: Samples generated by InfoVAE. The reconstructed
samples and model samples look similar in quality and
appearance, suggesting better generalization in the latent
space.

Table 1: Log likelihood estimates for different models on the
MNIST dataset. MMD-VAE achieves the best results, even
though it is not explicitly optimizing a lower bound to the
true log likelihood.

Log likelihood estimate
ELBO 82.75

MMD-VAE 80.76
Stein-VAE 81.47

Adversarial VAE 82.21

MMD is also used during training of MMD-VAE but only
estimated from mini-batches; during evaluation we can use
the full dataset to obtain more accurate estimates. The sec-
ond is the log determinant of the covariance matrix of qφ(z).
Ideally when p(z) is the standard Gaussian Σqφ should be
the identity matrix, so log det(Σqφ) = 0. In our experiments
we plot the log determinant divided by the dimensionality of
the latent space. This measures the average under/over esti-
mation per dimension of the learned covariance.

The results are plotted in Figure 6 (A,B). This is differ-
ent from the experiments in Figure 2 because in this case
the decoder is a highly complex pixel recurrent model and
the concern that we highlight is failure to use latent features
rather than inaccurate posterior. MMD achieves the best per-
formance except for ELBO. Even though ELBO achieves
extremely low error, this is trivial because for this exper-
imental setting of flexible decoders, ELBO learns a latent
code z that does not contain any information about x, and
qφ(z|x) ≈ p(z) for all z.

Sample distribution: If the generative model
p(z)pθ(x|z) has true marginal pdata(x), then the dis-
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Figure 6: Comparison of numerical performance. We evaluate MMD, log determinant of sample covariance, cross entropy with
correct class distribution, and semi-supervised learning performance. ‘Stein’, ‘MMD’, ‘Adversarial’ and ‘ELBO’ corresponds
to the VAE where the latent code are regularized with the respective methods, and ‘Unregularized’ corresponds to the vanilla
autoencoder without regularization over the latent dimensions.

tribution of different object classes should be identical
to the original dataset. On the other hand, an incorrect
generative model is unlikely to generate a correct object
class distribution. Let c denote the class distribution in
the real dataset, and ĉ denote the class distribution of the
generated images, computed by a pretrained classifier. We
use cross entropy loss lce(c, ĉ) = −cT (log ĉ − log c) to
measure the deviation from the true class distribution.

The results are plotted in Figure 6 (C). Stein regulariza-
tion performs well on low dimensional latent space (2 di-
mensions), whereas adversarial regularization performs bet-
ter on higher dimensions; MMD regularization performs
well in all the cases.

Training Speed and Stability: We prefer a model that
is stable, trains quickly and requires little hyperparameter
tuning. In Figure 6 (D) we plot the change of MMD statis-
tic vs. the number of iterations. In this respect, adversarial
autoencoder becomes less desirable because it takes longer
to converge, and sometimes converges to poor results even
with WGAN-GP discriminators (Gulrajani et al. 2017).

Semi-supervised Learning: To evaluate the quality of
the learned features for downstream tasks such as semi-
supervised learning, we train a SVM directly on the learned
MNIST latent features. We use the M1+TSVM setting in
(Kingma et al. 2014), and train with 1000 samples. Lower
classification error would suggest that the learned features z
contain more information about the data x. The results are
shown in Figure 6 (E). We observe that an unregularized au-
toencoder (which does not use any regularization LREG) is
superior when the latent dimension is low and MMD catches
up when it is high. Furthermore, the latent code learned by
ELBO contains almost no information about the input: the
classification error is no better than random guess.

Log likelihood: To be consistent with previous results, we
use the stochastically binarized MNIST (Salakhutdinov and
Murray 2008). Estimation of log likelihood is achieved by
importance sampling. We use 5-dimensional latent features
in our log likelihood experiments. The values are shown in
Table 1. All the objectives perform on-par or superior com-
pared to our ELBO baseline. We do not explicitly optimize a
lower bound to the true log likelihood, but still achieve good
log likelihood because of Proposition 2

Conclusion
Despite the recent success of variational autoencoders, they
can fail to perform amortized inference, or learn meaningful
latent features. We trace both issues back to the ELBO learn-
ing criterion, and modify the ELBO objective to propose a
new model family that can fix both problems. We perform
extensive experiments to verify the effectiveness of our ap-
proach. Our experiments show that a particular subset of our
model family, MMD-VAEs perform on-par or better than all
other approaches on multiple metrics of performance.
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