
Level Ground Walking for Healthy and

Transfemoral Amputee Models.Deep

Reinforcement Learning with Phasic Policy

Gradient Optimisation

Bachelor’s Project Thesis

Efstratios Mytaros, s3000370, e.mytaros@student.rug.nl

Supervisors: Prof. Dr. Raffaella Carloni, Vishal Raveendranathan, MSc∗

Abstract: This paper proposes to use deep reinforcement learning for physics based muscu-
loskeletal model simulations of both healthy and transfemoral prosthesis models, during level-
ground walking. The deep reinforcement learning algorithm is based on the phasic policy gradient
framework, which expands the proximal policy optimisation method with alternations to its aux-
iliary components. Initially, the optimisation is carried out on the healthy models, followed up
by optimizations on the transfemoral model. The agent was able to develop gait similar to that
from a given experimental data set, opening the doors for using the algorithm for efficient sim-
ulations of physical models. The results so far suggest a performance equivalent and potentially
even better than previous iterations.

1 Introduction

Using computer simulations to represent and ex-
plore the capacities of physical and physics-based
muscoloskeletal, allows us to discover and test sys-
tems that could otherwise take a much longer time
and effort to do so. The accuracy and speed of such
simulations, grants the opportunity to test multiple
aspects, much faster and with control over detailed
models.

This paper focuses on DRL by applying the pha-
sic policy gradient (PPG) algorithm, through in-
vestigating the performance of the algorithm pro-
posed by Cobbe, Hilton, Klimov, and Schulman
(2020), based on research conducted previously by
de Vree and Carloni (2020). Prior research focused
on adapting findings on similar research conducted
by ukasz Kidziski et al (2019) in the NeurIPS com-
petition, on the OpenSim (Scott and et al (2007))
platform, using the healthy models proposed in it
and adding to it, a transfemoral amputee model
implementation.

The proposed approach includes changes to prox-
imal policy optimisation (PPO) by Schulman, Wol-

ski, Dhariwal, Radford, and Klimov (2017), in-
spired by the PPG algorithm, by Cobbe et al.
(2020), by expanding upon it through the addition
of extra features. These changes include the restruc-
turing of the network in use, as well as the addition
of an auxiliary learning phase in the training of the
network.

The goal is to test whether the use of PPG would
be able to allow the agent to learn a forward walk-
ing gait. Particularly, implementing the fresh PPG
algorithm in a biomechanics topic and compare it
to its predecessor, PPO. Due to the recency of this
algorithm, it has yet to be implemented in such a
method, which will hopefully offer more refined re-
sulting actions from the model, due to its use of an
auxiliary phase to refine the value of the original
PPO algorithm.

Furthermore, for this additional phase to have
an even greater effect, the aim is to alter the aux-
iliary loss, to a more suitable objective, taking into
account what the auxiliary objective of the algo-
rithm in this case could be. Based on Cobbe et al.
(2020), the auxiliary objective of the loss, can be
tailored to fit the given environment. Considering

1

the performance of algorithms included in both
the NeurIPS’17 ukasz Kidziski, Mohanty, Ong,
Hicks, Carroll, Levine, Salath, and Delp (2018) and
NeurIPS’18 competitions, certain aspects are ob-
served to assist in successful gait generations. There
are examples of off-policy algorithms yielding sat-
isfactory results, usually associated with the use of
an experience buffer, as well as the use of separate
policies for trajectory generation and learning. By
combining the characteristics that seem to allow for
good performances with algorithms such as TRPO
and PPO, with those of algorithms like DDPG and
A3C, the version of PPG suggested in this paper
has the potential to perform very well in its envi-
ronment.

The overall aim is to generate comparable
gait patterns, by introducing aspects of the new,
adapted, PPG algorithm to biomechanic human
walking simulations. With the effect of the auxil-
iary phase, that enhances the effect of the proposed
reward to the system, this algorithm is suitable for
robotics tasks and generating stable gait patterns
for our forward walking model.

Figure 1.1: An overview of the system used in
this study

The designed healthy and transfemoral amputee
models, or agent, is being run through a simulation
environment (OpenSim). The agent interacts with
the environment, by receiving information about

the state of the world around it and feedback on
its actions through a goal and imitation compo-
nent. The rewards and observations from the en-
vironment serve as core information in updating
the algorithm and its networks. Taking these into
account, the algorithm produces an action for the
agent to take, through which it will interact with
its environment once again, and the cycle repeats.
To assist with the visualisation of what the overall
proposed architecture looks like, Figure 1 can be
used as a reference. OpenSim will be the platform
in which the simulations of our models/agents will
be running. It makes for an excellent simulation
tool due to its specialty in detailed muscoloskele-
tal model design and similar previous work. Those
simulations will yield some muscle and joint states,
as well as a reward, based on the goal and gait
functions, as well as the imitation learning compo-
nent, which will then be fed into the PPG DRL
algorithm. The algorithm will then generate an ap-
propriate action and parameters for the OpenSim
controller to simulate the forward dynamics of our
agent.

The rest of the paper discusses the theoretical
background in section II. This includes some infor-
mation about the OpenSim environment, explana-
tions on the gait equations and DRL algorithms.
Section III outlines the methodology of this study,
with information about the DNN used, the opti-
miser and the reward of the system for the forward
motion gait. Section IV will present and discuss the
results yielded from the research. The final section,
section V, will be the conclusion drawn from this
research.

2 Background Literature

The process of information acquisition and rele-
vant theoretical background collected during the
research will be outlined in three sub-sections, the
models used in previous research, the algorithms in-
vestigated relative to the task and finally, research
focused on gait patterns.

2.1 DRL for Simulations of Physics
Based Models

The field of walking and gait generation has a vari-
ety of different tools that can be used. The nature

2

of the environment being used, has an effect on the
algorithm choice and its performance in it.

Some are focused on particular applications, such
as the NAO robots, which provide a simulation en-
vironment that can be translated to the physical
robot as well. Research by Cristyan R. Gil (2019)
explored the learning of efficient gait patterns in the
NAO robots, by adapting the poses that the agent
can take, to a DRL generated gait pattern. Due
to the poses available from the NAO robot, they
were able to use Q-learning to generate discretely
available poses to be put together and compile a
complete and efficient gait cycle.

There are examples of research, where the model
is applied to a simulated environment, where the
agents can have more limbs to control, as well as
train on complex environments, such as the study
by Azayev and Zimmerman (2020). A blind hexa-
pod agent, in order to train it across different ter-
rains, applying a DRL algorithm to train its walk-
ing skills. This study applied the needs of the de-
sired gait to be generated in a MuJoCo environ-
ment. Another study in this environment is Naga-
bandi, Kahn, Fearing, and Levine (2017), which
also uses a combination of model based and model
free algorithms to investigate the gait of different
agents with varying limbs and joints. MuJoCo al-
lows for greater freedom in simulating the desired
models and adapting them to the tasks they should
be proficient in. et al (2016) create multiple agents
in their study of goal driven motion to train them
with DRL algorithms in a MuJoCo environment,
including humanoid walkers.

2.2 OpenSim Models

Simulations that allow for greater detail and speci-
ficity in the realm of muscoloskeletal models, in-
clude the OpenSim framework Scott and et al
(2007). This allows for realistic representations of
muscles and joints present in human anatomy. It
has been used by van der Krogt, Delp, and Schwartz
(2012) to generate muscle driven simulations, where
specific alterations were made to muscle groups to
vary their forces and excitations to test the limits
of normal gait generation.

Since OpenSim allows for such detail in the mod-
els that can be created for human anatomy, it as
been used by the ukasz Kidziski et al. (2018) and
ukasz Kidziski et al (2019) competitions. Given the

application of the research, having detailed rep-
resentations of the human muscoloskeletal system
and access to particular activations and forces that
would enable the generation of realistic forward mo-
tion seems advantageous to other methods. Similar
to the competitions from past years, the algorithms
proposed will generate forward walking gait, by ac-
tivating specific muscles.

Other methods like the NAO and general Mu-
JoCo simulations, although useful and reliable in
certain scenarios, can provide a lot of insights about
methods and approaches to gait generation. Open-
Sim however provides a much more fitting platform
to conduct experiments in, as it offers unique fea-
tures, suitable for this study.

2.3 Algorithm Basics

All algorithms found across different DRL frame-
works, share some common characteristics. These
are the building blocks upon which they are all
constructed and developed, while having particu-
lar aspects in mind. Since a lot of these aspects are
shared along different algorithms, it makes sense
for them to be established.

A few definitions will be outlined, in order to es-
tablish some terminology that will be used through-
out this paper. Initially, there are mentions of the
term, policy π, referring to the next action that
the model will be generating during its learning
phase. Every action, or policy, is being calculated
by taking the current environment state into ac-
count. Therefore a state s refers to a description
of the environment perceived by the agent in order
to produce its corresponding policy. Each time the
agent performs under a certain policy for a given
state, the value V (s), or utility of that state is be-
ing calculated and predicted. This is a quantifica-
tion and estimation of the ”goodness” of the state
by the agent, known as the value. The agent will
thus try to learn the value function through its ex-
periences during its learning phase.

Consequently, the means of determining the pol-
icy will dictate the prediction of the value function.
In general terms, there are two ways of generat-
ing a policy. One case is determining the probabil-
ity of each potential policy yielding a high value.
The result will be a list of policies, one or more
of which would be the best choice, given the cur-
rent state. By selecting the policy with the highest

3

probability of yielding a high value, our algorithm
will act in an on-policy manner. On-policy means
that the same policy determined by the delibera-
tion after the learning phase, is the one used to
adjust the value function of our agent. The second
case will also use this better policy selection based
on the highest returning value, but with an added
chance of it behaving in some random way from a
newly generated policy, unrelated to the ones de-
termined by the learning phase. Such a behaviour
is described as an off-policy method, due to the use
of a policy other than the one generated by the
learning phase prior to the calculation. Both these
methods guarantee some sort of exploration of new
states and policies for the agent, as well as exploita-
tion of already known policies. These definitions are
based on the book by Sewak (2019b)

One application of this sort of algorithm is be-
ing used for Deep Q Networks (DQN), algorithm,
as described in the book by Sewak (2019b). The
method used for obtaining the loss for the network
weights is off-policy, since it needs to have a sepa-
rate behaviour policy for its trajectories. using the
following equation, it can have a very good estimate
of the value of the system:

Q(s,a) = (1−α)Qs,a) +α(r+γ max
α′

Q(s′,a′)) (2.1)

DQN optimises its policy based on the update
of equation 2.1, but learns by updating a separate
policy π. The policy optimisation is more sophisti-
cated usually than the trajectory π, which is usu-
ally some trivial selection like ε-greedy, giving an ε
chance for the agent to act randomly, in order to
encourage exploration.

One application of the policy being the primary
focus is called REINFORCE, or Monte-Carlo pol-
icy gradient, conceived by Williams (1992). In this
case the policy is adjusting the vector parameters
of its network, denoted by θ, by using a combina-
tion of characteristics mentioned so far. Using the
Monte Carlo approach, it uses the estimated return
to update θ, based on the learning phase trajecto-
ries, the timesteps taken within the episodes during
that phase. The policy loss is calculated using:

∇θJ(θ) = ε[Qπ(s, a)∇θlnπθ(a|s)] (2.2)

In this equation, the states (s) and actions (a)
are measured from real model trajectories and use

them to directly update the policy gradient param-
eters θ. It is important to keep this characteristic of
this algorithm in mind for the ones that will follow.

REINFORCE, is a rather simple policy method
algorithm that has its shortcomings. Notably, it
does not take the value at all into consideration,
like DQN would. In order to improve on such al-
gorithms, a hybrid version of the policy and value
methods can be used. Value and policy methods
coincidentally complement one another because of
their respective strengths and weaknesses being ac-
counted for. This hybrid is known as actor-critic
methods. These algorithms commonly consist of
two networks, one for actor, or policy network and
one for the critic, or value network. These networks
work the same as the formerly mentioned examples,
using a loss function to update the network weights
through gradient descent in order to reach some op-
timal policy or value.

2.4 Actor-Critic Algorithms

These two concepts can be combined into one, in or-
der to maximise the performance of both according
to Konda and Tsitsiklis (2000). A critic-only algo-
rithm needs a good behaviour policy, since they rely
on value approximations that hopefully results in
some optimal policy. A policy-only algorithm needs
a means of reducing the large variance of the gradi-
ent estimators, and properly utilise the cumulative
knowledge acquired from past experiences. There-
fore, the actor uses an approximation of the gradi-
ent made by the critic.

A later application of this concept is found in
the Asynchronous Advantage Actor-Critic (A3C),
by Sewak (2019a). The critic network is trained
through multiple agents across parallel processes
that synchronise every so often. Such an approach
works optimally with multiple agents, but is not
restricted to it. The actor-network can use any be-
havioural policy, according to the paper, even var-
ied across processes. It uses a Mean Squared Er-
ror (MSE) loss between the predicted value and
returned value for its gradient descent and update
the value weights (w), as well as policy (θ):

Jv(w) = (Vt(s)− Vw(s))2 (2.3)

Similar actor-critic implementations include Soft
Actor Critic by Haarnoja, Zhou, Abbeel, and

4

Levine (2018). This is an early, yet effective adap-
tation of the novel actor-critic architecture, adding
the entropy measure of the policy into the reward of
the model. In doing so, it achieves more random be-
haviour that encourages exploration, yet still main-
taining its ability to succeed in its task. Utilising
both off-policy characteristics, allowing the reuse of
past data and experiences, as well as the entropy
factor, it achieves good sample efficiency and ex-
ploration of different policies. This algorithm has
been applied in a context of robotics locomotion
by Haarnoja, Ha, Zhou, Tan, Tucker, and Levine
(2019). The primary focus of the study has been
to emphasise the usefulness of sample efficiency in
real-life robotics applications. Driven by the need
to reduce the number of real life experiences that
an actual mechanism should use due to its fragile
nature and the need to maintain its structural in-
tegrity, they proceeded to make a case about the
advantages of the sample efficiency brought about
by the experience buffers and subsequent random-
ness from the entropy. This combination made for
quick learning with minimal risk for the physical
robot due to its trial and error behaviour while
learning.

Something to always consider when implement-
ing an algorithm, is its learning stability. More
stable systems avoid parameter updates that im-
pose too large of a change. The algorithm known
as Trust Region Policy Optimisation (TRPO), by
Schulman, Levine, Moritz, Jordan, and Abbeel
(2015), tackles this issue, by enforcing a KL diver-
gence constraint on the policy update. Since the
true reward of each trajectory cannot be extracted
directly, in most of these algorithms, we use the
Generalised Advantage Estimate (GAE), for the
trajectory cumulative value calculation. Consider-
ing the asynchronicity assumed also in A3C, TRPO
could be running parallel agents with each perform-
ing under a different policy in each world, but opti-
mised with a common one during its update. Let’s
denote the old policy from the trajectory generation
as πθold(a|s), for an action a in state s and similarly,
the optimisation policy as πθ(a|s). For its loss func-
tion, the objective function uses the trust region
constraint, limiting the distance between πθold(a|s)
and πθ(a|s), as measured by the KL divergence,
within some bounds δ:

KL = DKL(πθold(•|s)||πθ(•|s)) ≤ δ (2.4)

J(θ) = Es∼ρπθold ,α∼πθold [KLÂθold(s, a)] (2.5)

where equation 2.5 shows the discounted state
distribution of policy θold, as ρπθold . Combining
equation 2.4 with 2.5, shows the loss equation for
the policy update of TRPO.

An updated version of TRPO, is Proximal Policy
Optimization (PPO), which is the algorithm orig-
inally used in this research. To avoid the compli-
cated mathematical proof hidden behind TRPO,
PPO takes a simpler, yet similar approach to con-
straining the policy update. Instead of using the
KL divergence between two policies, it simplifies it
by using a clipped surrogate objective. Following
the definition by Schulman et al. (2017), we ini-
tially take the probability ratios between old and
new policies and denote it as shown in equation
2.6:

r(θ) =
πθ(a|s)
πθold(a|s)

(2.6)

The objective loss is almost identical, except for
equation 2.4 from 2.5, being substituted by 2.6:

J(θ) = Es∼ρπθold ,α∼πθold [r(θ)Âθold(s, a)] (2.7)

Once again, same as in TRPO, Âθold(s, a), is an
advantage estimate, mostly approximated by GAE.
The ratio r(θ) is clipped around an area of [1−ε, 1+
ε], where ε is one of the hyperparameters. Adding
the clip to 2.7, we get:

J(θ) = E[min(r(θ)Âθold(s, a), clip(r(θ), 1− ε, 1 + ε)Âθold(s, a))]

(2.8)
The value is being updated using the MSE loss

as shown in equation 2.3, in this case in the form of
(Vw(s) − Vtarget)2, where w are the value network
weights. It accounts for exploration by using an en-
tropy term sampled from the policy distribution.

For further improvements on the performance
of PPO, the separation of the networks for policy
and value training would reduce interference be-
tween the common network parameters for both

5

value and policy learning. Benefiting from both pa-
rameter sharing, as well as reducing the compet-
ing objectives between the two, can be achieved
through the use of two separate networks. One net-
work can be designated as the critic network, yield-
ing the values, while the other would be the actor
network, not only outputting a policy, but also a
value. Such a solution is achieved by the Phasic
Policy Gradient (PPG) algorithm, by Cobbe et al.
(2020). The networks are trained separately accord-
ing to the clip loss described in equation 2.8 for
the actor (parameters denoted by θπ) and MSE
for the critic(parameters denoted by θv). An ad-
ditional auxiliary loss is calculated during an ad-
ditional auxiliary phase, which ensures that the
shared value predicted by θπ is also used in the
loss. This loss is calculated through the auxiliary
loss, which on the paper by Cobbe et al. (2020), is
stated that it can be any auxiliary objective, but is
given the form:

LAUX =
Et(Vθπ (st)− Vtarget)2

2
(2.9)

by default. The formerly mentioned policy update
during the auxiliary phase is using the original
TRPO KL divergence from equation 2.5. The over-
all joint loss of the auxiliary phase looks like this:

LJOINT = LAUX+βcloneEt[KL[πθold(•|s)||πθ(•|s)]]
(2.10)

In equation 2.10, βclone is a hyperparameter con-
trolling the distance of the two policies. The fre-
quency of the auxiliary phase does not need to be
too regular, since that interferes with policy optimi-
sation. It therefore happens infrequently between
the clip optimisations. During those intermediate
updates, a buffer B is filled with experiences, sim-
ilar to the formerly mentioned off-policy methods.
Doing so allows PPG to train both with policies
from the current running trajectories, as well as
with varying policies from previously encountered
experiences.

3 Method

This paper builds upon the previously used algo-
rithm by de Vree and Carloni (2020), by adding fea-
tures found to be helpful in various DRL algorithms

used in a similar context. Such features include ad-
ditions to the neural network in use, for specialising
in both the policy and value outputs and including
an auxiliary phase that will be guided by an auxil-
iary objective suitable for the problem at hand. The
goal is once again to ensure that both healthy and
transfemoral models learn to walk forward on a flat
plain. Changes in the networks and loss functions
will be outlined in the following subsections.

3.1 The Models

This paper uses the same models that were being
used in a previous research by de Vree and Carloni
(2020). The healthy model in use consists of a to-
tal of 18 muscles, 9 per leg, while the transfemoral
model has 8 muscles on its right leg and 11 muscles
on the left. The right leg in this case is the trans-
femoral amputee leg, hence the reduced muscles rel-
ative to the left. The muscles in the transfemoral
model are positioned in such a way that mimics
the mechanical structure of a prosthetic, hence the
actuators are around the ankle and knee joints, as
seen in Figure 3.1.

3.2 The Imitation/Validation
Dataset

Any results yielded by this study are being vali-
dated against some experimental data collected by
Schwartz, Rozumalski, and Trost (2008). The data
was collected on 83 typically developing children
by measuring the kinematics and kinetics of the
hip, knee, and ankle joints, the surface electromyo-
graphic signals, and the spatio-temporal data. Ad-
ditionally, this data is used by the algorithm as an
imitation data set and is incorporated in the reward
of the system.

3.3 The Networks

Considering the benefits of algorithms such as Deep
Deterministic Policy Gradient (DDPG), by Lilli-
crap et al. (2019), that uses separate networks for
the actor and critic, as well as target networks for
each for applications outlined on table 2.1. It also
uses a replay buffer R for storing its past expe-
riences and has yielded very promising results in
its applications in the NeurIPS competitions in the
past, outlined in ukasz Kidziski et al (2019). Since

6

DRL Algorithm list
Primary algo-
rithm used

Application Algorithm update Source article

DDPG (Deep
Determin-
istic Policy
Gradient)

Cartpole swing-up, dex-
terous manipulation,
legged locomotion and car
driving

Actor-critic, model-free algo-
rithm based on the determin-
istic policy gradient that can
operate over continuous ac-
tion spaces

Lillicrap, Hunt,
Pritzel, Heess, Erez,
Tassa, Silver, and
Wierstra (2019)

Soft Actor
Critic (SAC)

OpenAI gym benchmark
suite, rllab implementa-
tion of the Humanoid task

Aim to optimise both policy
and q-networks with stochas-
tic gradient descent

Haarnoja et al. (2018)

SAC Quadrupetal minitaur
robot

Same as novel SAC, with en-
tropy scaling over time

Haarnoja et al. (2019)

TRPO SouthHampton Hand
Assesment Procedure
(SHAP)

Actor network aims to
minimise loss through KL-
divergence between old and
new policy

Mudigonda, Agrawal,
Deweese, and Malik
(2018)

PPO OpenAI Gym [Bro+16] Similar to TRPO, but uses
a clipped surrogate objective
and combines value network
and entropy components

Schulman et al. (2017)

distributed
PPO

Variety of bodies tested in
MuJoCo

Basic PPO with data collec-
tion and gradient calculation
are distributed over multiple
workers

Heess, TB, Sriram,
Lemmon, Merel,
Wayne, Tassa, Erez,
Wang, Eslami, Ried-
miller, and Silver
(2017)

BANG BANG
PPO

OpenSim muoskeletal
model

Basic PPO with simultane-
ous agents being reduced over
time

ukasz Kidziski et al
(2019)

PPG OpenAI Gym Basic PPO with disjoint pol-
icy and value networks, as
well as an auxiliary phase
that refines the value given to
the policy

Cobbe et al. (2020)

Table 2.1: Table outlining DRL algorithms and their applications

7

PPO has also performed very well in past itera-
tions, considering changes to the network proposed
by Cobbe et al. (2020), there were a few adjust-
ments implemented.

Figure 3.1: The healthy model (left) and trans-
femoral model (right) used for this paper

The network maintains a similar Multi Layer
Perceptron (MLP) structure, as in the study by
de Vree and Carloni (2020). Each network is a feed-
forward artificial neural network composed of 4 lay-
ers. The input layer depends on the observation
space of the model in use, 218 nodes for the healthy
model and 221 for the transfemoral. It is then fol-
lowed by 2 hidden layers of 312 nodes each, leading
to an output layer of 18 nodes for the healthy model
actor-network. The actor-network also has an extra
output node, the value Vθπ , sharing the θπ param-
eters with the policy output, resulting in a total
of 18 + 1 output nodes for the actor. The critic-
network with parameters VθV has the exact same
structure as the actor-network, except the output
layer consists of only the value node.

3.4 The Learning Algorithm

For the networks to be properly updated and have
their weights optimised to yield the desired actions,
a combination of optimisation algorithms is used.
The network performs updates based on the clipped
update proposed by Schulman et al. (2017), de-
scribed by equation 2.8. The hyperparameters con-
trolling the clip have been set to an ε value of 0.2
and an entropy coefficient of 0.01, determining the
scale of the sampled entropy to allow for balanced

exploration. These were chosen based on the de-
fault recommended values suggested in the original
paper by Schulman et al. (2017).

Trajectory generation has been set to a total
amount of 1536 timesteps, based on policy πθ. Op-
timisation on said gathered trajectories constitutes
of 4 training epochs, with the data being split into
thirds for batch training per epoch for both value
and policy. This part is the policy phase of the algo-
rithm (Nπ), which repeats for Nπ iterations, until
the next phase, the auxiliary phase (Eaux) is insti-
gated.

During Nπ, the gathered experiences and trajec-
tories are stored in an experience buffer B. For prac-
tical reasons of memory consumption on the lab
machine, the buffer size was restricted to a quarter
of Nπ, in order to avoid system crashes. The value
of Nπ) was set to 64, as Cobbe et al. (2020) state,
less frequent updates can lead to less interference,
thus the selected value. Following the policy phase,
the auxiliary updated was set to fit this environ-
ment and set a modified auxiliary goal. This goal
was adjusted to:

LAUX =
Et(1− e−

β
rewt)(Vθπ (st)− Vtarget)2

2
(3.1)

Equation 3.1 introduces a scaling factor β, which
is set to 1.2e-3 and the rewt reward returned by
the environment. The value of rewt is higher as
the agent performs better in the trajectories, and
through the scaling it adjusts by how much the aux-
iliary phase should update the θπ. The parameter
βclone was kept as 1, as suggested in the original
paper.

All these parts come together and combined they
create an algorithm which can be better visualised
through figure 3.3. The auxiliary phase was opti-
mised (Eaux) for 6 epochs, in order to avoid overfit-
ting the network. Batch training was also not incor-
porated to the auxiliary phase, as it would lead to a
higher sample reuse over the same data in B. This
algorithm structure enables the use of some for-
merly mentioned aspects of algorithms, such as ex-
perience buffers, a refining value update during the
auxiliary phase with Lvalue, the use of additional
policy restrictions to Lclip with Ljoint to keep the
model from having any large policy updates that
throw it off.

8

Figure 3.2: Pseudocode describing the PPG al-
gorithm by Cobbe et al. (2020)

Lastly, the auxiliary phase includes an additional
value update on the critic network. By having an
additional value update, the weights of θπ are up-
dated using the shared value with the updated pol-
icy πtheta. This updated πtheta, occurs after the up-
date based on the experience buffer B, thus the
critic parameters of the value network θV are also
updated on the same data.

4 Results

The results of the proposed algorithm are extracted
for both the healthy and transfemoral models. Data
validation is performed based on the kinematic
results extracted from the two simulated models,
against experimental data.

4.1 Algorithm Performance

The following results outline the performance of the
algorithm in comparison to the base PPO imple-
mentation. Looking at Figure 4.1, the red curve dis-
plays the performance of PPG plotted along with
the green curve, showing the base PPO perfor-
mance.

Figure 3.3: A more detailed diagram of the al-
gorithm used in this paper

Figure 4.1: Reward received by the PPG algo-
rithm (red), against the standard PPO perfor-
mance (green) on the healthy model. The re-
ward is plotted on the y-axis and total episodes
on the x-axis.

The increase in mean reward received by the
model using the PPG algorithm shows a tendency
to learn how to develop a rewarding policy more
efficiently than the base PPO algorithm. PPG al-
ready starts learning a better policy from 15.000
episodes, which then increases at a steady pace and
maxes out a little over the PPO curve, shown in fig-
ure 4.1. The reward takes around 10.000 episodes
less to reach similar heights as well as surpass the

9

previous implementation. A similar performance
can be said for the transfemoral model’s results,
displayed in figure 4.2, where an optimal policy
is found very early, at a comparable number of
episodes to that of the healthy model, around
15,000.

PPO PPG
mean std mean std

Healthy 2724.78 1444.45 3913.29 1781.23
Transfemoral 1797.91 1105.64 3603.93 1733.40

Table 4.1: The mean total reward and standard
deviation received by the models following both
base PPO and PPG algorithms.

For the healthy model, the mean as increased by
almost 1.5 times, when compared to the mean re-
ward of 2724.78. This increase to the mean reward
comes with the price of a higher standard deviation,
which also increased by a factor of 1.25. There is an
increase in the mean of the transfemoral model as
well, at a double amount of that of the PPO obser-
vation. This increase in mean reward is once again
accompanied by a larger standard deviation, at 1.5
times the original. The general observation is that
within the same number of episodes for both algo-
rithms, when using the same model, the adapted
PPG version clearly finds an optimal policy faster
than before.

Figure 4.2: Reward received by the PPG al-
gorithm (red), against the standard PPO per-
formance (green) on the transfemoral model.
The reward is plotted on the y-axis and total
episodes on the x-axis.

4.2 Kinematic Data

Kinematic data was extracted from simulation data
for the knee and ankle angles, as well as the mus-
cle activations of the bicep femoris, soleus, vasti
and tibialis anterior muscles, along with their fiber
forces. Z-scores are calculated to find the close-
ness of the simulation and experimental data, mean
muscle activations are compared between models
and the usage of individual legs in each case. Lastly,
fiber force graphs are observed for the formerly
mentioned muscles, mapping the force behaviour
over approximately three gait cycles.

Observing the graphs 4.4 and 4.3, the patterns
roughly match the shape and the calculated z-
scores show that the simulation data of the healthy
model compared to the experimental data are not
far apart. Table 4.2 shows the knee and ankle calcu-
lated z-scores, where the average from both models
does not exceed 1.18 standard deviations distance
from the experimental data. The transfemoral data
was observed to be very close to the experimental
set with low z-scores.

Figure 4.3: Knee angles shown for the healthy
(left) and transfemoral (right) models, plotted
against the experimental data

10

Figure 4.4: Ankle angles shown for the healthy
(left) and transfemoral (right) models, plotted
against the experimental data

PPG Angle z-scores
Knee Ankle

Healthy -1.18 0.25
Transfemoral -1.81 0.36

PPO Angle z-scores
Knee Ankle

Healthy -1.42 0.56
Transfemoral -2.76 0.66

Table 4.2: Z-scores calculated for the knee and
ankle angle between healthy and transfemoral
simulation and experimental data for PPO and
PPG algorithms

Comparing the shapes from figures 4.4 and 4.3,
the two algorithms roughly match the shape of the
experimental knee and ankle, with the correspond-
ing z-scores for the healthy knee being slightly be-
low the experimental knee measurements. The an-
kle measurements show a more faithful shape to the
experimental for the PPG algorithm, opposed to
the more exaggerated PPO angles. More accurate
results are observed for the transfemoral model for
the PPG algorithm, both in shape and correspond-
ing z-scores.

The muscle activation data, along with the fiber
forces shown in table 4.3, display the average kine-
matic performance in the two models for both
legs. The healthy models generally has smaller to-
tal difference values for both measures between the
two legs. This is not the case for the transfemoral
model, which has a slightly higher difference in the
activation means, but a much larger difference cal-
culated for the fiber forces between the left and
right legs. Noteworthy differences were found be-
tween the Vasti and Soleus muscles, with the right
leg exerting a much larger force than the left.

The fiber forces seen in figure 4.5, show rather
erratic behaviour for the bicep femoris muscles in
both models. Soleus fiber forces shown in figure 4.6,
which show relatively more stable patterns for the
healthy, when compared to the transfemoral model.
The opposite could be said for figure 4.7, where
the healthy produced rougher forces. The tibialis
anterior muscles also produce similar results with
no particular model standing out compared to the
other in figure 4.8.

Overall, the observed results show an overall
faster learning rate than what PPO showed in pre-
vious iterations, leading to quicker results in with
less experience episodes required. Moreover, after
observing the resulting gait patterns, the result-
ing PPG gait has more consistent patterns, closer
to the experimental data as well. Differences also
include the increase use of the knee joint for the
right leg of the model. Earlier versions struggled
with getting a more consistent knee movement go-
ing, but PPG has yielded more satisfactory results,
displaying more realistic use of the joint.

11

Healthy

Transfemoral

Figure 4.5: Bicep Femoris Fiber Forces for the
healthy (red) and transfemoral (blue) models

Healthy

Transfemoral

Figure 4.6: Soleus Fiber Forces for the healthy
(red) and transfemoral (blue) models

Healthy

Transfemoral

Figure 4.7: Vasti Fiber Forces for the healthy
(red) and transfemoral (blue) models

Healthy

Transfemoral

Figure 4.8: Tibialis Anterior Fiber Forces for the
healthy (red) and transfemoral (blue) models

12

Healthy
Muscle Left Right Delta
Bifemsh 0.68 0.63 0.051

Activation Vasti 0.21 0.19 0.022
mean Soleus 0.23 0.21 0.036

Tibialis Anterior 0.63 0.73 0.10
Total Difference in means 0.21

Healthy
Muscle Left Right Delta
Bifemsh 370.41 330.43 39.97

Fiber Force Vasti 1326.39 1112.01 214.39
mean Soleus 1047.047 822.93 224.10

Tibialis Anterior 1037.25 1242.90 205.65
Total Difference in means 684.13

Transfemoral
Muscle Left Right Delta
Bifemsh 0.64 0.67 0.03

Activation Vasti 0.07 0.19 0.12
mean Soleus 0.33 0.51 0.18

Tibialis Anterior 0.75 0.69 0.05
Total Difference in means 0.38

Transfemoral
Muscle Left Right Delta
Bifemsh 346.20 341.07 5.12

Fiber Force Vasti 384.47 1107.08 722.61
mean Soleus 1194.97 2466.54 1271.57

Tibialis Anterior 1368.31 1202.18 166.12
Total Difference in means 2165.44

Table 4.3: Results comparing the muscle usage
between healthy and transfemoral models

4.3 Limitations and Future Work

Considering the use of the particular DRL approach
in generating gait patterns in an efficient manner
in both healthy and transfemoral models, the al-
gorithm proposed in this paper is successful in its
goal.

Despite this success however, the results ex-
tracted are lacking in realism. Applying the exact
fiber forces into a real-life prosthetic piece would
not be wise due to the erratic force outputs. It is
also uncertain how the learned policy would trans-
late in any physical system, given that the simula-
tion environment is using the given muscle activa-
tions as an input that does not necessarily translate
into a mechanical components.

Future work should focus on ensuring that such
systems are tested and the performance of the al-
gorithm is equivalent. Additionally, the algorithm
utilises the auxiliary phase to better optimise the
value of the system. This said reward should be op-
timised itself in its calculation in order to make the
most out of the refining features of the auxiliary up-
dates. One way to encourage less erratic patterns

is by incorporating equations that describe muscle
behaviour during the gait in each phase it is in and
penalise deviations.

5 Conclusions

OpenSim environments combined with the DRL
methods imposed by the actor-critic approaches,
lead to promising results in learning to develop a
steady gait for transfemoral prosthesis. Given the
background of transfemoral prosthesis is small and
limited, this paper contributes to the overall ex-
pansion of literature in the field. Additionally, the
new PPG algorithm has not been tested in such
environments in the past and was assumed to offer
small improvements in performance in non-mujoco
tasks.

This research though shows that taking advan-
tage of the network structures, as well as the sug-
gested auxiliary equations to fit the problem at
hand, can produce promising results and develop
walking patterns in OpenSim environments. The
joint angles yielded by the simulations are close to
the experimental data set used. The transfemoral
model showed that the Vasti and Soleus muscles
would need higher activations to compensate for
the lack of the healthy muscles to generate a com-
plete gait.

This research can be used as a basis to develop
faster and more efficient gait patterns, when using
one of the latest developed DRL algorithms. Train-
ing a model to reach good results and equivalent
walking patterns to PPO can be done faster, with
the potential to develop more advanced and sophis-
ticated equations to produce less erratic muscle ac-
tivations. Such a feat would allow the algorithm to
translate the resulting behaviour directly into a real
mechanical system

References

Teymur Azayev and Karel Zimmerman. Blind
hexapod locomotion in complex terrain with
gait adaptation using deep reinforcement learn-
ing and classification. Journal of Intelligent &
Robotic Systems, 99:659–671, 09 2020.

Karl Cobbe, Jacob Hilton, Oleg Klimov, and John
Schulman. Phasic policy gradient, 2020.

13

Humberto Sossa Cristyan R. Gil, Hiram Calvo.
Learning an efficient gait cycle of a biped robot
based on reinforcement learning and artificial
neural networks. MDPI AG, 9:24, 02 2019. doi:
https://doi.org/10.3390/app9030502.

Leanne de Vree and Raffaella Carloni. Deep Re-
inforcement Learning for Physics-based Muscu-
loskeletal Simulations of Healthy Subjects and
Transfemoral Prostheses Users during Normal
Walking. PhD thesis, University Groningen,
2020.

Yan Duan et al. Benchmarking deep reinforcement
learning for continuous control, 2016.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. Soft actor-critic: Off-policy max-
imum entropy deep reinforcement learning with
a stochastic actor, 2018.

Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie
Tan, George Tucker, and Sergey Levine. Learn-
ing to walk via deep reinforcement learning, 2019.

Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay
Lemmon, Josh Merel, Greg Wayne, Yuval Tassa,
Tom Erez, Ziyu Wang, S. M. Ali Eslami, Martin
Riedmiller, and David Silver. Emergence of lo-
comotion behaviours in rich environments, 2017.

V. R. Konda and J. N. Tsitsiklis. Actor-critic
algorithms. Advances in Neural Information
Processing Systems, 12:1008–1014, 2000. URL
https://ci.nii.ac.jp/naid/10007790456/en/.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander
Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous
control with deep reinforcement learning, 2019.

Mayur Mudigonda, Pulkit Agrawal, Michael De-
weese, and Jitendra Malik. Investigating deep
reinforcement learning for grasping objects with
an anthropomorphic hand, 2018.

Anusha Nagabandi, Gregory Kahn, Ronald S. Fear-
ing, and Sergey Levine. Neural network dynam-
ics for model-based deep reinforcement learning
with model-free fine-tuning, 2017.

John Schulman, Sergey Levine, Philipp
Moritz, Michael I. Jordan, and Pieter

Abbeel. Trust region policy optimiza-
tion. CoRR, abs/1502.05477, 2015. URL
http://arxiv.org/abs/1502.05477.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

Michael H. Schwartz, Adam Rozumalski, and
Joyce P. Trost. The effect of walking speed
on the gait of typically developing children.
Journal of Biomechanics, 41(8):16391650,
2008. doi: 10.1016/j.jbiomech.2008.03.015. URL
https://doi.org/10.1016/j.jbiomech.2008.03.015.

Scott and Anderson et al. Opensim: Open-source
software to create and analyze dynamic simu-
lations of movement. Biomedical Engineering,
IEEE Transactions on, 54:1940 – 1950, 12 2007.
doi: 10.1109/TBME.2007.901024.

Mohit Sewak. Actor-Critic Models and the
A3C: The Asynchronous Advantage Actor-Critic
Model, pages 141–152. Springer, 06 2019a.

Mohit Sewak. Temporal Difference Learning,
SARSA, and Q-Learning, pages 51–63. Springer
Singapore, Singapore, 2019b.

Marjolein van der Krogt, Scott Delp, and Michael
Schwartz. How robust is human gait to muscle
weakness? Gait & posture, 36:113–9, 02 2012.

Ronald J. Williams. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Reinforcement Learning, page
532, 1992.

ukasz Kidziski, Sharada P. Mohanty, Carmichael
Ong, Jennifer L. Hicks, Sean F. Carroll, Sergey
Levine, Marcel Salath, and Scott L. Delp. Learn-
ing to run challenge: Synthesizing physiologically
accurate motion using deep reinforcement learn-
ing, 2018.

ukasz Kidziski et al. Artificial intelligence for pros-
thetics - challenge solutions, 2019.

14

