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Abstract— This paper focuses on deep reinforcement learning
for physics-based musculoskeletal simulations of healthy and
impaired (transfemoral amputee) models during normal level
ground walking. The proposed method builds upon the phasic
policy gradient framework (which expands the proximal policy
optimization method by separating policy and value function
training) and combines it with imitation learning. The opti-
mization of the deep neural network is carried out on the
healthy model and, then, applied to the transfemoral amputee
model. The healthy model learns to develop gait patterns and
muscle forces similar to that from a public experimental data-
set of healthy subjects, while the transfemoral model shows
a plausible gait pattern in accordance with the introduced
muscle impairment. The results also show that the phasic policy
gradient optimization significantly improves the simulation of
the two models during level-ground walking when compared to
proximal policy optimization.

I. INTRODUCTION

Computer simulations of physics-based models provide
a valuable aid in the research on human and robotic lo-
comotion. In this broad field, deep reinforcement learning
(DRL) has recently proved to have high potential in teach-
ing physics-based models to efficiently perform locomotion
tasks. In [1], a hexapod robot can learn to walk across
different terrains in the MuJoCo environment. In [2] a
NAO humanoid robot can generate different gait patters by
means of Q-learning. In [3] and [4], several robotic models
with varying limbs and joints are tested in MuJoCo with
different DRL algorithms to learn locomotion patterns. More
complex algorithms, such as soft actor-critic [5], [6] and
deep deterministic policy gradient [7] have also been used
to learn locomotion tasks while achieving stable walking
patterns at fast learning rates. Proximal policy optimiza-
tion (PPO) [8] has been used to train multiple workers at
once in rich environments by synchronizing their learning
experiences to maximize the overall performance [9] and
to teach different musculoskeletal models to walk in the
OpenSim environment [10], [11]. Table I summarized some
of the core research contributions in which DRL, either
implementing on-policy or off-policy methods, have been
used for simulations of locomotion tasks for physics-based
human and robotic models.

This paper focuses on DRL for the simulation of physics-
based musculoskeletal models of both healthy subjects
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TABLE I: DRL algorithms for human and robotic locomotion.

[ Ref. [ DRL Algorithm | Application(s) ]

[1] (2020) on-policy hexapod robot

[2] (2019) Q-learning with separate poli- | NAO humanoid
cies for exploration and ex-
ploitation (off-policy)

[3] (2017), off-policy and on-policy multi-legged robots,

[4] (2016) humanoids

[5] (2018) soft actor-critic with stochastic | humanoid robot
gradient descent (off-policy)

[6] (2019) soft actor-critic with entropy | quadruped robot
scaling over time (off-policy)

[7] (2019) deep deterministic policy gra- | multi-legged robots
dient (off-policy)

[8] (2017) PPO (on-policy) humanoid robot

[9] (2017) distributed PPO (on-policy) multi-legged robots,

humanoids
[10] (2019), | PPO (on-policy) musculoskeletal hu-
[11] 2021 man model
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Fig. 1: An overview of the DRL architecture used in this study.

and impaired subjects (transfemoral amputee) during level-
ground walking at normal speed. The DRL algorithm is
inspired by the phasic policy gradient (PPG) optimization
presented in [12] and is combined with imitation learning to
guarantee a natural walking gait for both models. Specifi-
cally, the proposed PPG optimization, which is made of an
actor network and a critic network, includes an auxiliary
learning phase in the training of the actor network that
accounts for the pelvis velocity and the muscles activations.
Figure 1 shows an overview of the proposed architecture
for teaching the agent (either the healthy subject or the
transfemoral amputee) to generate normal level-ground gait
patterns in the open source simulation environment Open-



Sim [13]. The agent is trained by the DRL with PPG
optimization, which receives a reward (computed on an
objective function and an imitation learning term) and the
observed muscles’ and joints’ states of the agent as inputs,
and outputs an action, i.e., the activation of the muscles.

To summarize, the contributions of this paper are: (i) To
propose the use of an on-policy DRL method with off-policy
characteristics (i.e., PPG with imitation learning) for physics-
based musculoskeletal models simulations in OpenSim; (ii)
To modify the state of the art implementation of PPG to
account for the musculoskeletal model; (iii) To analyze and
evaluate the kinematic data and muscle forces of a healthy
and an impaired model while walking on a level-ground
terrain at normal speed; (iv) To compare the performances
of PPG with imitation learning (on-policy method with off-
policy characteristics) with our previous work on PPO with
imitation learning (on-policy method) [11], and to show the
improved performances of the former.

The remainder of the paper is organized as follows. The
two musculoskeletal models are presented in Section II
together with the public experimental data-set used for
imitation learning and validation. Section II describes the
method proposed in this study, with details about the deep
neural network, the PPG optimizer, and the reward function.
Section IV presents and discusses the results obtained dur-
ing simulations. Finally, concluding remarks are drawn in
Section V.

II. MATERIALS

This Section presents the two physics-based musculoskele-
tal models used in this study, i.e., the healthy and the
impaired (transfemoral amputee) models, and the public
data-set used for the imitation learning and the validation
of the method.

A. The Models

The two physics-based musculoskeletal models have been
developed in OpenSim and are shown in Figure 2. The
healthy model, as proposed in [14], consists of a total
of 18 healthy Hill-type muscles (9 per leg) to control 10
degrees of freedom. The impaired (transfemoral amputee)
model, as proposed in our previous work [11], consists of
19 healthy Hill-type muscles (11 in the healthy left leg
and 8 in the amputated right leg) to control 12 degrees
of freedom. Specifically, the impaired reduced-muscles right
leg has two additional degrees of freedom (one per leg) for
the hip adduction/abduction, and only uni-articular muscles
(i.e., two agonist/antagonist muscles at the hip joint, two
agonist/antagonist muscles at the knee joint, and two ago-
nist/antagonist muscles at the ankle joint). This means that
the bi-articular muscles (i.e., rectus femoris and gastrocne-
mius) have been removed from the right leg.

B. Imitation/Validation Data-set

The data-set used for the imitation learning and for the
validation of the DRL algorithm belong to a public data-
set [15]. The data was collected on 83 typically developing
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Fig. 2: The healthy model (left) [14] and the transfemoral amputee model
(right) [11].

children by measuring the kinematics and kinetics of the hip,
knee, and ankle joints, the surface electromyographic signals,
and the spatio-temporal data. This study uses the pelvis, hip,
knee, and ankle joints’ angles, velocities, and the ground
reaction forces.

III. METHOD

This study proposes to use DRL to teach physics-based
musculoskeletal models of both healthy and impaired (trans-
femoral amputee) subjects to walk on a level ground ter-
rain at normal speed. The DRL algorithm builds upon our
previous work [11], where we used the PPO optimization
algorithm in combination with imitation learning, and in-
troduces the PPG optimization algorithm in combination
with imitation learning. Specifically, the PPG optimization
algorithm is inspired by the work in [12] and, in this study, it
is specialized for the physics-based musculoskeletal models
under investigation and has been modified in the auxiliary
phase.

A. Deep Neural Networks: Actor and Critic Networks

As in conventional actor-critic algorithms, this study uses
an actor network and a critic network. Each deep neural
network is a feed-forward artificial neural network, i.e., a
multi-layer perceptron, composed of 4 layers, as in [11].
Specifically, the input layer depends on the observation space
of the model, i.e., 218 nodes for the healthy model and 221
for the transfemoral amputee model. Afterwards, there are 2
hidden layers of 312 nodes each. Finally, the output layer of
the actor network has 19 nodes (healthy model) or 20 nodes
(impaired model), which includes the muscles activations (18
for the healthy model and 19 for the impaired model) and
the value Vp_ of the policy for the parameters 6. The output
layer of the critic network has only one node, i.e., the value
Vp,, for the parameters 6y .



B. Optimization Algorithm

1) PPO: Let my,,,(a¢|s:) be the old policy and g (a|st)
the new policy, where 6 and 6,4 are the new and old
parameters, and a; and s; are the action vector and the state
vector at time step ¢, respectively. The ratio between the
probabilities of the new and the old policy at time step ¢ is:

71'9(045|8t)
ﬂ-‘gold(a’tlst)

To update the policy, PPO uses the following loss func-
tion [8]:

LCLIP(G)

r¢(0) = )

= E; [min(ri(0) As, clip(ri(0),1 — €, 1 + €) Ay)]
2)
where E is the expected value, A; is the advantage estima-
tion, i.e., the difference between the expected and the real
reward from an action, and ¢ is the clip value. If the proba-
bility ratio falls outside the range [(1 —€),---, (1 + €], the
advantage function is clipped to prevent too large policy
updates.
To update the value, the mean square error loss is used,
ie.

1
§(V9(St) - %arget)2 (3)

where Vp(s;) is the value of the policy for the parameters 6
and Vigrge: 1s the value returned by the environment due to
the action a;.

2) PPG: To reduce interference, in PPG, a separation
between the training of the policy and the value function has
been introduced [12], which is achieved by using two sepa-
rate networks, i.e., the actor network which yields both the
policy and the value, thus benefiting from parameter sharing
like PPO does, and the critic network which yields the value.
The two networks are trained separately. Specifically, the
actor network has two loss functions. The first loss function,
which is used for N, (equals to 64 as in [12]) iterations
during the policy phase, is:

LELIP () 0:) Az, clip(ri(0x),1 — €, 1+ €)Ap)]

“4)
where 74(0,) = %&1‘8“2) is the probability ratio between
the probabilities of the new and the old policy at time step
t in the parameters 6, and 6. ,,, respectively.

The second loss function, which is used during the auxil-
iary phase (optimized for 6 epochs), is:

= E; [min(r(
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where KL indicates the Kullback-Leiber divergence (which
measures how one probability distribution is different from
another) and « (which is set to 1 as in [12]) is a hyperpa-
rameter controlling the distance between the two policies.
The frequency of the auxiliary phase does not need to
be too regular, since it interferes with the policy optimiza-
tion. It therefore happens infrequently between the clip
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Fig. 3: Detailed diagram of the modified PPG optimization algorithm as
proposed in this study.

optimizations, or policy phase according to [12]. During
those intermediate updates, an experience buffer is filled
with experiences. By doing so, PPG trains both with policies
from the current running trajectories, as well as with varying
policies from previously encountered experiences.

For the critic network, the mean square error loss is used
to update the value, i.e.:

1 2
5(‘/:9,” (St) - ‘/target) (6)
where Vj, (s¢) is the value of the critic network for the
parameters ¢, and Vigrge: is the value returned by the
environment due to the action ay.

3) Proposed Modified PPG: In the proposed modified
PPG, the two networks, i.e., the actor network which yields
both the policy and the value, and the critic network which
yields the value, are still trained separately. The actor net-
work has two loss functions: the first one is also given
by Equation 4 and is used during the policy phase. The
hyperparameters controlling the clip have been set as follows:

= 0.2 and the entropy coefficient is 0.01 to allow for
balanced exploration.

The second loss function has been modified with respect
to Equation 5 and is given by:

LJOINT LKL LAUX

mod
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where rew; is the reward returned by the environment (based
on the pelvis velocity and the muscles activations) and v is
a a scaling factor, which is set to 1.2 -1073,

For the critic network, the same mean square error loss as
in PPG (see Equation 6) is used to update the value.

Figure 3 shows a detailed diagram of the modified PPG
optimization algorithm as proposed in this study.



C. Reward Function

The action generated by the model results in a reward,
which can be either positive or negative depending on the
action the model just took. If the model does a favorable
action, it receives a positive reward. If the model does an
unfavorable action, it receives a negative reward, i.e., a
penalty. To learn the tasks, the model should receive as much
reward possible.

In this paper, the reward function is calculated at each time
step t and consists of four parts, i.e.:

Jgoal ('/T)t - Z(rdistance - pvelocity - pcosts) + Z(Talive)

t t

(8)
where 7g;stance 18 the reward based on the distance that the
model’s pelvis covered since the last timestep, Pyeiocity 1S the
penalty for deviating too much from the desired velocity (i.e.,
0.75 m/s, 1.25 m/s, or 1.75 m/s, depending on which one it
matches the closest), pqosts 1S the penalty on the muscles’
fatigue, and 4, is the reward for the amount of timesteps
spent without falling. The model is considered alive as long
the pelvis is 0.75 m above ground level.

Finally, the reward function is as follows [11]:

J(Tr)t =04- Jgoal(’”)t +0.6 - Jimitation(ﬂ—)t (9)

where the added imitation term Jymitation(7): uses the
experimental data to ensure that the algorithm converges to
a solution and that the model develops a natural gait pattern.

IV. RESULTS AND DISCUSSION

This Section presents the results obtained for both the
healthy and impaired (transfemoral amputee) models when
the modified PPG with imitation learning is used, and com-
pares its performances to PPO with imitation learning [11].
Specifically, the kinematic data and the fiber forces of
some muscles, extracted from the two models against the
experimental data, are reported and discussed.

A. Reward

Figure 4a shows the rewards received by PPG (red)
compared to PPO (green) for the healthy model. It can be
noted that PPG finds an optimal reward policy sooner than
PPO. Specifically, PPG starts learning a policy from ~15.000
episodes and the reward increases at a steady pace and maxes
out a little over PPO. PPG takes ~10.000 episodes less to
reach similar a reward as well as surpass PPO. A similar
performance is achieved on the transfemoral amputee model
on which an optimal policy is found at ~15.000 episodes,
as shown in Figure 4b.

Table II reports the total reward (mean and standard
deviation) received by the two models with PPO and PPG
algorithms. For the healthy model, the mean reward with
PPG is almost 1.5 times greater than with PPO. This increase
to the mean reward comes with the price of a higher standard
deviation, which also increased by a factor of 1.25. For the
transfemoral amputee model, the mean reward with PPG is
almost 2 times greater than with PPO, while the standard
deviation has increased by a factor of 1.5. The general
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Fig. 4: Reward per episode obtained with PPG (red) and PPO (green) for
the healthy (a) and transfemoral amputee models (b).

observation is that within the same number of episodes for
both algorithms, when using the same model, the proposed
PPG algorithm finds an optimal policy faster than PPO.

TABLE II: Total reward (mean and standard deviation) received by the two
models with PPO and PPG.

PPG PPO

mean std mean std
Healthy 3913.29 | 1781.23 | 2724.78 | 1444.45
Transfemoral Amputee | 3603.93 | 1733.40 | 1797.91 | 1105.64

B. Kinematic Data

Figure 5 shows the angular positions of the knee and ankle
joints for both the healthy and transfemoral amputee models
during one gait cycle, obtained with PPG (green) and PPO
(blue), and overlaid on the experimental data (shaded blue
area with the mean value in the red line). From Figure Sa,
it can be noted that the knee angles in the healthy model
are fairly accurate with respect to the experimental data
when simulated with PPG, and better than PPO. However,
in the transfemoral amputee model, due to the absence of
the bi-articular muscle (i.e., gastrocnemius), the knee flexion
is highly affected and the kinematic data are not accurate
with respect to the experimental data, as shown in Figure 5b.
Interestingly, thanks to the presence of the vasti and its high
utilization even in early stance because of the absence of bi-
articulation, the knee extension is still possible. In the figure,
it can also be observed that, around 30% of the gait cycle,
PPG is able to recruit the knee flexors to initiate toe-off for
the swing phase, which is on the contrary not achieved by
PPO. From Figure Sc, it can be noted that also the ankle
angles in the healthy model are fairly accurate with respect
to the experimental data when simulated with PPG, and
better than PPO. PPG can recruit the ankle plantarflexors and
dorsiflexors in a similar trend as the experimental data. The
same can be concluded from Figure 5d for the transfemoral
amputee model thanks to the presence of the major muscles
(i.e., the soleus and tibialis anterior) for plantarflexion and
dorsiflexion.

To quantify the closeness between the simulated and the
experimental data of the knee and ankle joints for both mod-
els, z-scores have been calculated and reported in Table III.
The z-scores confirm that the simulated knee and, especially,



the ankle data have a more faithful shape to the experimental
data when PPG is used instead of PPO.
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Fig. 5: Kinematic data (angular positions of the knee and ankle joints)
obtained with PPG (green) and PPO (blue) for the healthy model (left) and
for the transfemoral amputee model (right) plotted against the experimental
data (shaded blue area with the mean value in the red line).

TABLE III: Z-scores between the simulated (with PPG and PPO) and the
experimental angular positions of the knee and ankle joints for the healthy
and transfemoral amputee models.

PPG PPO

knee ankle | knee ankle
Healthy -1.18 | 0.25 -1.42 | 0.56
Transfemoral Amputee | -1.81 | 0.36 -2.76 | 0.66

C. Muscle Fiber Forces

Figures 6 and 7 show the fiber forces of the bicep
femoris, soleus and of the vasti and tibialis anterior muscles,
respectively, for both legs of the healthy and the transfemoral
amputee models over approximately three gait cycles. The
green lines denote the mean fiber force over the time period.
By comparing Figures 6g and 6h, it can be noted that to
compensate for the loss of the gastrocnemius muscle in the
transfemoral amputee model, the soleus muscle on the right
leg of transfemoral amputee model is activated the most.
Similarly, by comparing Figures 6¢c and 6d, it can be noted
that to compensate the loss of rectus femoris muscle in the
transfemoral amputee model, the biceps femoris model has
to exert much higher fiber forces. The peak muscle fiber
force in the biceps femoris is five times higher than the peak
of healthy model counterpart. Additionally, by comparing
Figures 7c and 7d, it can be observed that also the vasti
muscle has a significant increase in the average muscle force
(i.e., 1000 N).

Table IV reports the mean fiber forces and the difference
between the left and right leg. It can be noted that the healthy

model has comparatively lower difference for the mean fiber
forces of the left and right leg than the transfemoral amputee
model. This difference explains the asymmetry in the gait
of the transfemoral amputee model, which is due to the
absence of the bi-articular muscles (i.e., the bicep femoris
and gastrocnemius). Moreover, the higher fiber forces for
the vasti and soleus for the transfemoral amputee model can
be observed in an increase in the difference between the left
and right leg.
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Fig. 6: Fiber forces of the bicep femoris and soleus muscles for both legs
of the healthy (red) and transfemoral (blue) models.

V. CONCLUSIONS

This paper proposed to use of DRL for teaching physics-
based musculoskeletal models to walk on level ground
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Fig. 7: Fiber forces of the vasti and tibialis anterior muscles for both legs
of the healthy (red) and transfemoral (blue) models.

terrains at normal speed. The proposed DRL algorithm
uses a modified PPG optimization algorithm combined with
imitation learning.

The results show that the modified PPG with imitation
learning outperforms PPO with imitation learning in terms of
overall faster learning rate, in more consistent gait patterns,
and closeness to the experimental data. Differences between
the two algorithms also include an increased, yet more
realistic, use of the knee joint in the transfemoral amputee
model.

This research shows that the simulation of physics-based
models can take advantage of the deep reinforcement learn-
ing and, specifically, of an actor-critic network structure, to

TABLE IV: Results for the comparison of the difference in muscle usage
between the healthy and transfemoral amputee models.

Healthy
Muscle Left Right A
Bifemsh 0.68 0.63 0.051
Activation Vasti 0.21 0.19 0.022
mean Soleus 0.23 0.21 0.036
Tibialis Ant. | 0.63 0.73 0.10
Healthy
Muscle Left Right A
Bifemsh 370.41 330.43 39.97
Fiber Force  Vasti 1326.39 1112.01 214.39
mean Soleus 1047.047 | 822.93 224.10
Tibialis Ant. | 1037.25 1242.90 205.65
Transfemoral Amputee
Muscle Left Right A
Bifemsh 0.64 0.67 0.03
Activation Vasti 0.07 0.19 0.12
mean Soleus 0.33 0.51 0.18
Tibialis Ant. | 0.75 0.69 0.05
Transfemoral Amputee
Muscle Left Right A
Bifemsh 346.20 341.07 5.12
Fiber Force  Vasti 384.47 1107.08 722.61
mean Soleus 1194.97 2466.54 1271.57
Tibialis Ant. | 1368.31 1202.18 166.12

develop walking patterns. In fact, the joint angles yielded
by the simulations are close to the used experimental data-
set, where the transfemoral amputee model showed that
the vasti and soleus muscles would need higher activations
to compensate for the lack of the bi-articular muscles to
generate the gait.
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