
Robotics and Autonomous Systems 135 (2021) 103690

a

b

c

s
a
a
p
t

m
A
o
o
c
u
p
f
p
d

f

p
L

(

h
0

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Robot skill learning in latent space of a deep autoencoder neural
network
Rok Pahič a,b,∗, Zvezdan Lončarević a,b, Andrej Gams a, Aleš Ude a,c

Humanoid and Cognitive Robotics Lab., Department of Automatics, Biocybernetics, and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
Faculty of Electrical Engineering, University of Ljubljana, Slovenia

a r t i c l e i n f o

Article history:
Received 1 April 2020
Received in revised form 30 October 2020
Accepted 2 November 2020
Available online 11 November 2020

Keywords:
Skill learning
Latent space representations
Deep autoencoder neural networks

a b s t r a c t

Just like humans, robots can improve their performance by practicing, i. e. by performing the desired
behavior many times and updating the underlying skill representation using the newly gathered data.
In this paper, we propose to implement robot practicing by applying statistical and reinforcement
learning (RL) in a latent space of the selected skill representation. The latent space is computed by
a deep autoencoder neural network, with the data to train the network generated in simulation.
However, we show that the resulting latent space representation is useful also for learning on a real
robot.

Our simulation and real-world results demonstrate that by exploiting the latent space of the
underlying motor skill representation, a significant reduction of the amount of data needed for effective
learning by Gaussian Process Regression (GPR) can be achieved. Similarly, the number of RL epochs can
be significantly reduced. Finally, it is evident from our results that an autoencoder-based latent space
is more effective for these purposes than a latent space computed by principal component analysis.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

One of the main prerequisites for robots to operate outside of
tructured environments is the ability to continuously learn and
dapt actions and motor skills [1]. By acting in the real world and
ccumulating new knowledge, a robot can gradually improve its
erformance [2], which is an important step towards achieving
he dream of lifelong robot learning [3].

Learning complete actions and/or skills from scratch is in
ost cases not feasible because the search space is too large [4].
better approach is often to initiate the learning process by

bserving a skilled teacher performing the desired task, i.e. by
bserving human demonstrations [5]. However, unless the robot
an generalize from the available human demonstrations, it is
nlikely that the accumulated knowledge would be directly ap-
licable in all possible states of the real world [6]. Skill transfer
rom a human might also not achieve the same outcome when
erformed by a robot due to the correspondence problem [7], or
ue to the nature of the task itself.
To adapt to the current state of the environment and per-

orm the desired task, a new skill instance could be synthesized

∗ Corresponding author at: Humanoid and Cognitive Robotics Lab., De-
artment of Automatics, Biocybernetics, and Robotics, Jožef Stefan Institute,
jubljana, Slovenia.

E-mail addresses: rok.pahic@ijs.si (R. Pahič), zvezdan.loncarevic@ijs.si
Z. Lončarević), andrej.gams@ijs.si (A. Gams), ales.ude@ijs.si (A. Ude).
ttps://doi.org/10.1016/j.robot.2020.103690
921-8890/© 2020 The Author(s). Published by Elsevier B.V. This is an open access a

nc-nd/4.0/).
using a database of previous executions of the applicable skill.
If the skill instances in the database are related to each other
through a known set of parameters describing the task, then a
good skill instantiation for the current task description can be
computed by statistical generalization of skill executions stored in
the database [8]. In this paper, we refer to this set of parameters
as the goal of an action or a query point. If statistical generalization
does not result in an appropriate action to fulfill the desired task,
then the computed skill parameters must be adapted, e. g. by
reinforcement learning (RL).

Reinforcement learning provides a framework and a set of
tools for learning of sophisticated and hard-to-engineer behav-
iors [9]. However, the high number of degrees of freedom (DOFs)
typical for robots as well as the continuous state and action
space make RL notoriously difficult in practical applications [10].
The use of parameterized policies, policy search methodolo-
gies [11], and the exploitation of initial knowledge, e. g. from
human demonstration, can somewhat alleviate this problem.
Nevertheless, it is often necessary to reduce the dimensionality
of the RL problem to make it tractable.

Different dimensionality reduction methods have been ap-
plied in the past to reduce the learning space. A parametric
representation for robot control policies, e. g. the well-known
Dynamic Movement Primitives (DMP) [12], provides a relatively
low-dimensional representation of the action space. However,
the dimensionality of the DMP parameter space is still rather
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.robot.2020.103690
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2020.103690&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:rok.pahic@ijs.si
mailto:zvezdan.loncarevic@ijs.si
mailto:andrej.gams@ijs.si
mailto:ales.ude@ijs.si
https://doi.org/10.1016/j.robot.2020.103690
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
Max

Max

Max

Max

Max

Max

R. Pahič, Z. Lončarević, A. Gams et al. Robotics and Autonomous Systems 135 (2021) 103690

h
d
w
v
a
W
a
s
m
n
t

1

p
r
O
b
a
d

l
l
d
p
s
r

t
p
o
l
F
a
s
c
t

2

t
m
t
p
a
a
a
p
t
d
p
a
m
s
p
c
c
i

t
p
s
d
T

igh for learning [6]. One of the best known general methods for
imensionality reduction is Principal Component Analysis (PCA),
hich projects the data onto the vector space spanned by basis
ectors defined by the variance of the data [13]. Dimension-
lity reduction and regression have been combined in Locally
eighted Projection Regression (LWPR) [14], an algorithm that

chieves nonlinear function approximation in high dimensional
paces even in the presence of redundant and irrelevant input di-
ensions. Another common method are the (deep) autoencoder
etworks [15], where the data is pushed through the layer with
he smallest number of neurons — the latent space.

.1. Main contributions

In this paper we propose and experimentally evaluate the
rocess of obtaining new skills by exploiting a latent space rep-
esentation defined by a deep autoencoder (AE) neural network.
ur main aim was to show that both generalization and RL can
e applied more effectively in latent space than in the original
ction space, which in our case is defined by the DMP parameters
escribing the desired skill.
One of the learning aspects under consideration was the prob-

em of accumulating the database for learning. Statistical skill
earning needs a database to generalize from and training of a
eep autoencoder requires an even larger database [16]. In this
aper we show that an autoencoder trained on a database of
imulated data can be used to compute the latent space of real
obot actions.

We verified the proposed approaches by learning robotic ball
hrowing in latent spaces. Our experiments show that by com-
uting an autoencoder from simulated robot throwing data, we
btain an effective latent space representation for reinforcement
earning and statistical generalization of throwing movements.
urthermore, this way faster convergence of RL methods can be
chieved and a smaller database of throwing actions is needed to
ynthesize accurate real-world throwing movements by statisti-
al generalization. This is intuitive because the dimensionality of
he resulting optimization problems is smaller in latent spaces.

. Related work

Dynamic movement primitives (DMP) are often taken as mo-
or representation in reinforcement learning (RL) [9,10]. The di-
ensionality of learning DMP parameters in combination with

actile and visual feedback has been deemed too large in some
ractical applications [17], prompting RL in latent space of actu-
tor redundancies. Latent spaces defined by autoencoders were
pplied for this purpose [17,18]. Deep autoencoders and vari-
tional autoencoders have also been used to train movement
rimitives in a low-dimensional latent space [19,20]. It is clear
hat a deep autoencoder neural network can greatly reduce the
imensionality of the movement representation. However, de-
ending on the size of the latent space, it can also reduce the
ccuracy of the representation [20]. Another way to reduce the di-
ensionality of the search space is by constraining the parameter
pace with statistical generalization [6,21]. This way the learning
rocess can be sped up. However, constraining the learning space
an leave out some valid solutions. Exploration in RL can also be
onstrained to proceed only along the most significant directions
n the parameter space [22,23].

Statistical learning using a database of example skill execu-
ions and task descriptors has been applied to compute DMP
arameters in the past. Methods such as Gaussian Process Regres-
ion (GPR) [24], Locally Weighted Regression (LWR) [8,25], and
eep neural networks [26] have been applied for this purpose.

he application of GPR was extended to compliant DMPs [27],

2

Cartesian DMPs [28], arc-length DMPs [29], and for the au-
tonomous generation of the training database [2]. In this paper,
we analyze the performance of GPR when statistical learning is
done in a latent space defined by either autoencoders or PCA and
compare the results to the standard generalization in the DMP
parameter space.

Task parameters were also applied for learning of parameter-
ized skills [30], where the authors propose adapting the DMP
weights of a single demonstration based on the task parameter.
Parameterized skill memories [31] enable task specific gener-
alization from a low number of examples and are based on
DMPs. Methods based on other trajectory representations were
developed, too. For example, the Mixture of Motor Primitives
(MoMP) [32] was used to obtain a task policy that is composed
of several movement primitives weighted by their ability to
generate successful movements in the given task context. Zhou
et al. [33] propose to apply mixture density network for the
mapping from the task parameter query to the parameters de-
scribing the movement primitives distribution. The approach of
Calinon [34] is centered around task-specific Gaussian Mixture
Models (TP-GMM). An extensive list of papers on learning of
task-parameterized movements is provided in [34].

Statistical learning in latent spaces was analyzed in several
papers. Zuo et al. [35] show that latent spaces can be explored
in a controlled manner and argue that this complements various
inference methods. Variational autoencoders (VAE) were used to
compute latent spaces in this work. Le et al. [36] demonstrated
that supervised dimensionality reduction architectures can pro-
vide improved generalization performance, which is also the key
feature of our approach. Perhaps the most similar to ours is the
work reported by Yoo et al. [37], where GPR is applied in the
latent space defined by VAE. However, unlike in our work, where
latent space generalization is applied for synthesizing new robot
trajectories, generalization in Yoo et al. [37] was applied to visual
data.

3. DMP latent space representations

We start by introducing the movement representation utilized
throughout this paper, followed by the description of two latent
space representations that can be used for training of motor
skills encoded by the selected representation: autoencoder-based
latent spaces and PCA-based latent spaces.

3.1. DMP parameter space

Dynamic Movement Primitives (DMPs) have been designed to
represent any smooth robot motion. They can be used to provide
a parametric representation of motor skills in the context of robot
skill learning [12]. However, each particular motor skill usually
spans only a low-dimensional manifold in the space of all possible
robot movements. It should therefore be possible to map DMPs
representing a desired skill to a lower dimensional parameter
space (latent space). The idea is that learning in low-dimensional
latent spaces should be faster and easier than learning in the full,
usually high-dimensional parameter space.

According to Ijspeert et al. [12], a DMP that controls the
motion of one degree of freedom is defined by a second order
differential equation system (1)–(2) and phase equation (3)

τ ż = αz(βz(g − y) − z) + f (x), (1)
τ ẏ = z, (2)
τ ẋ = −αxx, (3)

where y ∈ R is the robot control parameter while x ∈ R is the

phase, which is introduced to avoid explicit time dependency.

Max

Max

Max

Max

Max

Max

Max

Max

Max

Max

Max

R. Pahič, Z. Lončarević, A. Gams et al. Robotics and Autonomous Systems 135 (2021) 103690

T
i
α
f

ψ

s
m
D

3

a
w
k
r
c
h
a
p
l
d
θ
h
b

t

θ

here are a number of parameters that need to be specified,
ncluding the temporal scaling factor τ > 0, the time constants
z, βz, αx > 0, and the weights ω ∈ RN that define a nonlinear
orcing term f (x)

f (x) =

∑N
i=1 ωiψi(x)∑N
i=1 ψi(x)

x(g − y0),

i(x) = exp
(

−
1
2δ2i

(x − ci)2
)
.

The parameters of the forcing term are used to create a system
response that follows any smooth point-to-point trajectory from
the initial configuration y0 to the final configuration g . ci are the
centers of N radial basis functions ψi(x), while the parameters δi
control their widths.

The parameters αz, βz, αx, ci and δi are usually set to constant
values, whereas the initial and final position y0 and g , time
constant τ , and the weights ω are obtained from the data. See [8,
12] for more details about how to compute these parameters.
The desired commands for the robot (y, ẏ and possibly ÿ) are
computed by integrating Eqs. (1)–(3) using Euler integration with
the initial values set to y = y0, z = τ ẏ = 0, x = 1.

For robots with more degrees of freedom, each degree has
its own control variables y and z, starting configuration y0, final
configuration g and weights ω. Time constant τ and phase x are
hared between the degrees of freedom, which ensures that the
otion of all the degrees of freedom is synchronized. Thus the full
MP parameter space has dDMP = (N + 2)nDOF + 1 parameters.

.2. Autoencoder-based latent space

A deep autoencoder (AE) is a type of neural network, often
pplied for dimensionality reduction [19]. Deep autoencoders
ith nonlinear layers enable good dimensionality reduction while
eeping the most relevant part of motion information in the
educed representation. During training, the AE learns how to
opy its input data (in our case DMPs) to the output with the
ighest possible precision. Two parts comprise an autoencoder:
n encoder and a decoder network (see Fig. 1). In the encoder
art, data are pushed through the layers until they reach the
ayer with the smallest number of neurons (bottleneck). The
ecoder part expands the bottleneck layer so that the output data

˜
DMP

match the input data θDMP as well as possible. Thus we
ave Fdec ≈ F−1

enc. The latent space is defined by neurons of the
ottleneck layer. We denote its dimension by dAE, dAE < dDMP.
To train an autoencoder network, we need to gather a large

number of skill executions and represent them with DMPs θDMP
i ∈

RdDMP , i = 1, . . . ,m. The following criterion function is then
optimized

ζ⋆ = argmin
ζ

1
m

m∑
i=1

θDMP
i − Fdec

(
Fenc

(
θDMP
i

))2 , (4)

where ζ⋆ are the autoencoder parameters (weights and biases of
neurons in the AE network). The precise structure of the deep
AE neural network is usually determined experimentally by a
network designer.

Once the network has been trained, we can compute the latent
space representation of any given DMP θDMP

∈ Rd
DMP by applying

he encoder part of the network,
AE

= Fenc
(
θDMP)

∈ RdAE . (5)

Similarly, the decoder part of the network maps the latent space
representation θAE back to the DMP parameter space

θ̃
DMP

= Fdec
(
θAE)

∈ RdDMP . (6)
3

3.3. PCA-based latent space

Principal Component Analysis (PCA) [38] is a classical ma-
chine learning procedure for dimensionality reduction. It can be
described as the orthogonal projection onto a low dimensional
linear subspace such that the variance of the projected data is
maximized. The main difference between autoencoders and the
PCA is that the AE provides a nonlinear transformation to the
latent space, whereas PCA results in a linear transformation.

Given the training data {θDMP
i }

m
i=1, θDMP

i ∈ RdDMP , PCA is
performed by computing the mean of the data θ̄

DMP
= 1/m

∑m
i=1

θDMP
i and by forming the matrix W PCA ∈ RdDMP×dPCA composed of

column eigenvectors associated with the largest eigenvalues of
the data covariance matrix

S =
1
m

m∑
i=1

(
θDMP
i − θ̄

DMP
)(

θDMP
i − θ̄

DMP
)T
, (7)

where dPCA < dDMP is the minimum number of eigenvectors
needed to describe the variance in the data {θDMP

i }
m
i=1 with the

required accuracy. dPCA is often determined experimentally, but
automated methods are also possible.

For any given DMP θDMP
∈ RdDMP , its projection onto the

PCA-based latent space is computed as follows

θPCA
= W T

PCA

(
θDMP

− θ̄
DMP

)
. (8)

The formula below can be applied to map latent space parameters
θPCA

∈ RdPCA back to the initial DMP parameter space

θ̃
DMP

= W PCAθ
PCA

+ θ̄
DMP

. (9)

4. Learning in AE- and PCA-based latent spaces

The main aim of this paper is to show that skill learning
methodologies such as reinforcement learning and statistical
learning can be implemented more effectively by exploiting low-
dimensional latent space skill representations. In this section, we
outline the application of reinforcement learning using a variant
of PoWER method and the application of statistical learning
method Gaussian Process Regression (GPR), both for skill learning
in latent spaces. For experimental analysis, we implemented both
learning approaches in the AE- and PCA-based latent space as well
as in the full DMP parameter space.

4.1. Reinforcement learning in latent spaces

Reward weighted policy learning with importance sampling,
which is a variant of Policy Learning by Weighting Exploration
with the Returns (PoWER) method [10], was selected for test-
ing the performance of RL in latent spaces. This method uses a
parameterized skill policy and a reward function to maximize
the expected return of skill performance trials. Its advantages are
that it can be used with any policy representation (important
when comparing the performance of different representations)
and is robust with respect to reward functions. We provide our
implementation of this method in Appendix A.

RL in both the DMP parameter space and latent spaces esti-
mates the movement parameters using Eqs. (A.2)–(A.3). The only
difference when RL is implemented in the latent space is that the
estimated parameters θAE

n and θPCA
n need to be transformed back

to the DMP parameter space to control the robot. In the case of
AE-based latent space representation, this is performed using the
decoder network

˜
DMP (AE)
θn = Fdec θn . (10)

Max

Max

R. Pahič, Z. Lončarević, A. Gams et al. Robotics and Autonomous Systems 135 (2021) 103690

a

S
w

θ

I

h
a

4

s
s
a
h
m
v
f

m
1
G
t
w
a
s
a

G

A
u
a
t

5

b
i
o
o
t
o
h

t
i
s
i
o

Fig. 1. Simple example AE network: the encoder part Fenc : RdDMP ↦→ RdAE of the network is to the left of the bottleneck layer (with bottleneck neurons as output)
nd the decoder part Fdec : RdAE ↦→ RdDMP to the right of the bottleneck layer (with bottleneck neurons as input).
imilarly, in the case of PCA-based latent space representation,
e apply the formula

˜
DMP
n = W PCAθ

PCA
n + θ̄

DMP
. (11)

ndex n denotes the current iteration step of RL.
The reduced dimensionality of latent spaces is expected to

ave a positive effect on the convergence and stability of RL
lgorithms.

.2. Gaussian processes regression in latent spaces

To test the performance of statistical skill learning in latent
paces, we applied Gaussian Process Regression (GPR) to estimate
kills represented in the full DMP parameter space [24] or in AE-
nd PCA-based latent space. GPR has been selected because it
ad been demonstrated [39] that it outperforms other regression
ethods in difficult learning problems such as estimating the in-
erse dynamics of a seven degrees of freedom robot arm. See [39]
or more details on the practical implementation of GPR.

For statistical learning, we need to gather example skill perfor-
ances θDMP

i together with the associated task descriptors qi, i =

, . . . ,m, where m is the number of example skill executions.
PR then computes a mapping function that for each new desired
ask descriptor qd predicts the corresponding control policy θDMP

d
hen learning takes place in full DMP parameter space or θAE

d
nd θPCA

d when learning takes place in AE- and PCA-based latent
pace, respectively. Thus, the following transformation functions
re computed by GPR:

DMP({θDMP
i , qi}

m
i=1) : qd ↦→ θDMP

d , (12)

GAE({θAE
i , qi}

m
i=1) : qd ↦→ θAE

d , (13)

GPCA({θPCA
i , qi}

m
i=1) : qd ↦→ θPCA

d . (14)

fter computing the AE- and PCA-based latent space parameters
sing Eqs. (13) and (14), respectively, we can compute the associ-
ted DMP control policy for skill execution by applying the same
ransformation as in the case of RL, i.e. Eqs. (10) and (11).

. Experimental setup

The experiments in this paper focus on the task of robotic
all throwing at a target. We treat throwing as a planar problem
n the vertical plane, i. e., in the saggital plane of the robot. The
rientation of the plane is assumed to be correct. There is no loss
f generality due to this assumption as we can reorient the robot
owards the target if the orientation is not correct. The target, in
ur case a basket, is therefore displaced in the distance and the
eight from the robot’s base.
We used a 7 DOF robot arm Mitsubishi PA-10 for robotic

hrowing. Three DOFs of the robot, which contribute to its motion
n the saggital plane, were used to realize ball throwing. The
imulation setup is depicted in Fig. 2a, while the real-world setup
s shown in Fig. 2b. We used MuJoCo [40] for dynamic simulation
f robot throwing. We put a ball holder into the robot hand both
4

in simulation and on the real robot and the ball is placed onto the
holder, but is not firmly attached. Thus when the throwing action
is carried out, both in dynamic simulation and on the real robot,
the ball detaches itself from the holder once the hand motion
starts slowing done, i.e. after the acceleration falls to zero and
becomes negative. This is different than in human ball throwing
where the ball is usually firmly held by the fingers before being
released.

Throwing was selected because it was previously studied in
the context of statistical generalization [8] and reinforcement
learning [41]. It can thus provide benchmarks to compare the
effectiveness of different methods when applied in the latent
space or in the full motion space defined by DMP parameters.

5.1. Generating AE and PCA-based latent spaces

To compute the AE- and PCA-based latent spaces, we first
generated the training dataset

D =
{
θDMP
j

}P
j=1
, (15)

which consists of P robot throwing trajectories representing the
DMP parameters θDMP

j describing the joint motion of the three
degrees freedom that are relevant for throwing. With N = 20
DMP weights for each DOF we get 60 weights and together with
3 starting points, 3 goals and 1 common time constant this adds
up to 67-dimensional DMP parameter space θDMP .

The example throwing trajectories for training a deep au-
toencoder neural network were generated using the procedure
described in Appendix B. A database for a target grid with the dis-
tances in the range from 1.5 to 4.5 m and the heights in the range
from 0 to 2 meters was generated, with 48 equally spaced target
points per meter in both dimensions. We discarded all trajectories
and targets that resulted in joint positions or velocities outside
of real robot joint and joint velocity limits. This way we gathered
9824 example throwing trajectories (see also Fig. 3a). The targets
for which executable robot trajectories could be generated are
marked with small blue dots in a target rectangle of 3 m × 2
m (the black rectangle). A subset of trajectories associated with
targets in the black square was used to train GPR, while a subset
of trajectories associated with targets in the red dashed square
was used for testing the performance of GPR. The red crosses
mark the targets for testing reinforcement learning. The data are
available for download at [42].

To compute an AE-based latent space and reduce the dimen-
sionality of the learning problems, we designed a deep AE neural
network with a 3-dimensional bottleneck layer, which defines
its latent space. The size of the latent space was determined
experimentally by reducing its size until the accuracy of trans-
formation from latent space to DMP parameter space started to
drop significantly. The resulting AE network was comprised of 5
hidden layers with 15, 10, 3, 10, and 15 neurons, as shown in Fig.
4a. For the activation function of each hidden layer we used y =

tanh(WAEθ + bAE), where ζ⋆ = {WAE, bAE} are the AE parameters
and θ denotes the input to the neurons. The activation function

R. Pahič, Z. Lončarević, A. Gams et al. Robotics and Autonomous Systems 135 (2021) 103690

3

Fig. 2. Experimental setup for evaluation of reinforcement learning and statistical learning in different spaces. (a) Mujoco dynamic simulation. (b) Mitsubishi PA-10
robot in its initial posture (left), after the release of the ball (center), and when the ball lands (right).
Fig. 3. (a) Kinematic simulation for creating the datasets for training and testing, with the training and testing areas marked by rectangles. Examples of the computed
end-effector trajectories for ball throwing are presented in red with the corresponding ball flight trajectories in green. (b) The computed joint trajectories and joint
velocities corresponding to the end-effector trajectories. Dashed red lines mark the boundary values for joint positions and velocities. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
w
W

G

of the output layer was linear. For autoencoder training we used
70% of trajectories contained in dataset (15). The remaining 15%
of data were used for validation and 15% for testing.

The three-dimensional AE-based latent space can also be used
to visualize the data. Fig. 4b shows a 3-dimensional plot of the
computed latent values. The spread and the connected shape of
the latent space data promise a good generalization performance.

Using dataset (15), we also conducted PCA analysis and ob-
tained the following largest eigenvalues: λ = [1445980, 5769,
623, 1058, 19, 1, . . .]. We chose the PCA latent space dimension

to be equal to 3, even though it would also be possible to choose
the PCA latent space dimension of 4 based on these values. We
used 3 to fairly compare learning in PCA- and AE-based latent
spaces. Namely, in our experiments the additional fourth latent
space dimension significantly slowed down the reinforcement
learning in the PCA-based latent space compared to when only
3 dimensions were used.

5.2. Dataset for statistical learning

Just like the computation of latent spaces, statistical learning
needs training data, too. As discussed in Section 4.2, besides DMP
parameters, statistical learning also requires the corresponding
query points. We created three datasets to evaluate statistical
learning with three different movement representations (DMP
parameter space and AE- and PCA-based latent space of DMP
parameters). Data in black square in Fig. 3a was used to create
5

these datasets, which resulted in datasets composed of throwing
trajectories for distance and height values in the range of 1.5 m–
3 m and 0 m–1.5 m. The distance and height were discretized
into 10 equidistant values, thus altogether we obtained 100 pairs
of query points and throwing trajectories. The resulting throw-
ing trajectories were used to compute the 67 dimensional DMP
representation (see Section 3.1) and then transformed into a 3
dimensional AE- and PCA-based latent space representation (see
Section 3). These trajectory representations were then used to
generate executable robot trajectories in dynamic simulation,
where the new landing distances and heights were computed.
Note that these were slightly different for each representation
as the mapping to latent spaces and DMP integration result in
slightly different movements (see Fig. 5).

In the above data generation procedure, the query points were
defined as

q = [d, h]T, (16)

here d is the distance and h the height of the throwing target.
e obtained the following datasets for GPR training

DMP
=
{
θDMP
j , qDMP

j

}R
j=1
, (17)

GAE
=
{
θAE
j , q

AE
j

}R
j=1
, (18)

GPCA
=
{
θPCA, qPCA}R . (19)
j j j=1

R. Pahič, Z. Lončarević, A. Gams et al. Robotics and Autonomous Systems 135 (2021) 103690

t

w
a

w
c
c
f

Fig. 4. (a) Illustration of the designed autoencoder structure. (b) Example points in the latent space, computed by projecting the training data shown in Fig. 3 to
the latent space.
Fig. 5. Query points of datasets for statistical generalization and targets for
esting.

here θDMP
j , qDMP

j are the DMP throwing trajectories and the
ssociated queries, while θAE

j , qAE
j and θPCA

j , qPCA
j are their AE- and

PCA-based latent space counterparts, respectively.

6. Experimental results

First, we compared the effectiveness of PCA- and AE-based
latent spaces by comparing their reproduction error. Then we
evaluated the implemented learning processes with different tra-
jectory representations in dynamic simulation and on a real robot.

6.1. Reproduction error of AE- and PCA-based latent spaces

The latent spaces generated by the proposed autoencoder net-
work and principal component analysis are both three-
dimensional and from the perspective of dimensionality compa-
rable for learning. A good indication for how well each method
has learnt the latent space is its reproduction error. We define the
reproduction error as the difference between the original DMPs
(trajectories) and trajectories computed by first applying Eq. (5)
or (8) to respectively project the original DMPs onto the AE- and
PCA-based latent spaces, followed by an application of Eq. (6)
or (9) to map the latent space representations back to the DMP
representation. The reproduction error for the jth joint trajectory
can thus be computed as follows

E(j) =
1
Tj

Tj∑
i=1

∥yAE/PCAj (xi,j) − yDMP
j (xi,j)∥, (20)

here xi,j = x(ti,j) are the phases, yAE/PCAj (xi,j) the robot joint
onfigurations obtained by integrating the jth output DMP as
alculated by the AE or PCA, and yDMP

j (xi,j) the robot joint con-
igurations obtained by integrating the original jth DMP without
6

Table 1
Reproduction errors resulting from the projection onto the latent spaces com-
puted by AE, PCA, and AE with linear activation functions. The results represent
the average error (20) over all DMPs from the test set.

Joint trajectory error [rad]

AE 0.0157 ± 0.0003
PCA 0.0781 ± 0.0016
AE with linear activation functions 0.0516 ± 0.0019

latent space projection. Tj denotes the number of points for the
jth DMP. A subset of the data described in Section 5.1 was used
for testing (1474 examples), while the rest of the data was used
to train AEs and compute PCA.

To evaluate the importance of handling nonlinear transforma-
tions, we performed an ablation analysis in which we removed
the nonlinear activation functions and retrained the AE with only
linear activation functions. We then compared the performance of
the autoencoder with and without nonlinear activation functions.
Note that the AE with linear activation functions has the same
number of tunable parameters for learning as the AE with non-
linear activation functions. However, when only linear activation
functions are present, AE can be shortened after training to an
encoder matrix and a decoder matrix, each having the same
number of parameters as the PCA matrix.

Results in Table 1 show that the average reproduction error
is smaller with AEs than with PCA. This is consistent with other
results presented later in Sections 6.2 and 6.3. In general, a better
reproductive performance can be expected when using AE-based
latent spaces compared to PCA-based latent spaces. This is due to
the ability of the AEs to perform nonlinear approximations [15].
Our results in Table 1 confirm this with an expected decrease in
performance when nonlinear activation functions are removed.
However, AEs with linear activation functions still have a smaller
reproduction error than PCA. This might be because unlike with
PCA, the latent space dimensions of the AEs do not have to be
orthogonal.

6.2. Reinforcement learning experiments

The main focus of our RL experiments was to evaluate the
stability and speed of convergence.

6.2.1. Dynamic simulation
Reinforcement learning for each trajectory representation was

first tested in dynamic simulation with throwing at three differ-
ent targets (see Fig. 3a). For each target, we carried out the re-

inforcement learning process (A.2) 15 times, altogether 45 times

R. Pahič, Z. Lončarević, A. Gams et al. Robotics and Autonomous Systems 135 (2021) 103690

f
h
p
u
e
o
t
m
r

R

a
e
e
s
s
v

s
t
t
g
c
r

s
t
t
a
c
s
r
s
t
c
b
o

6

a
w
p
h
p
t

R

T
m
s
m
i
v
w
e

r
5

r
l
t
e
T

or each representation. Each RL session was stopped if the robot
it the target or the number of rollouts exceeded 100. For all ex-
eriments, no matter the target or trajectory representation, we
sed the same initial approximation for the throwing trajectory,
ncoded into the representation that was being tested. As a result
f each throw τ i, we measured the shortest distance between
he target qT and the point on the throwing trajectory qi. The
easured distance was used to compute the terminal reward for

einforcement learning

(τi) = exp(−∥qT − qi∥
2). (21)

The exploration noise was tuned for each learning space sep-
rately. It was lowered in each step to 98% of the previous
xploration noise. Each fifth trial was executed without adding
xploration noise to test the convergence. For AE-based latent
pace we took into account that activation function tanh is re-
tricted to the interval [−1, 1], thus we forced the latent space
alues with added noise into this interval.
The convergence of reinforcement learning for this task is

hown in Fig. 6a, which shows the average error for each trajec-
ory representation, computed as the smallest distance between
he target and the ball. We also compared the speed of conver-
ence by counting iterations until the first hit, where a throw was
ounted as a hit if the computed distance was less than 2 cm. The
esults are shown in the bar graph in Fig. 6b.

It is clear from these graphs that RL in latent spaces converges
ignificantly faster than RL in full DMP parameter space, both in
erms of distance to the target and the number of rollouts needed
o hit the target. Not only is the convergence faster, but it is
lso more stable as can be observed from the size of the 95%
onfidence interval. The reason for this is that RL in full parameter
pace has a considerable chance to produce throws in which the
obot looses the ball before making the actual throw. On the other
ide, learning in latent spaces limits the exploration to the actual
hrowing trajectories and thus finds the solution faster. It is also
lear that AE-based latent space learning outperformed the PCA-
ased latent spaces, which is probably due to the nonlinear nature
f deep AE neural networks.

.2.2. Real robot experiments
Reinforcement learning with different representations was

lso tested on a real Mitsubishi PA-10 robot. The task of the robot
as to throw the ball into a basket. To simplify the measurement
rocess, we chose targets on the horizontal line and measured the
orizontal difference between the target xT and the ball landing
osition xi. The terminal reward for reinforcement learning was
hus computed as

(τi) = exp(−(xT − xi)2). (22)

he size of the basket and the ball were such that the ball could
iss the middle of the target by about 3 cm on each side but
till land in the basket. The main difference between the afore-
entioned dynamic simulation and the real robot experiment

s that on the real robot we cannot execute trajectories that
iolate its joint and/or joint velocity limits. A non-executable trial
as marked with a 10 m error, and obtained an appropriately
xtremely low reward.
We selected two targets on the horizontal floor and applied

einforcement learning process (A.2) for each of the two targets
times, i. e., a total of 10, and obtained results shown in Fig. 7.
The experiments with the real robot confirm our simulation

esults. Reinforcement learning in the PCA-based and AE-based
atent space is much faster and more stable than learning in
he DMP space, which has many problems with generating ex-
cutable throws that can hold the ball in the throwing spoon.

he learning in AE-based and PCA-based latent spaces does not

7

Table 2
Average throwing error and its variance when applying GPR in three different
learning spaces. 49 throws with targets uniformly spread within the selected
area were used for generalization. Results represent the distance between the
desired target and the closest point on the ball flight trajectory.

Throwing error [m]

GPR in DMP parameter space 0.046 ± 0.029
GPR in AE-based latent space 0.024 ± 0.015
GPR in PCA-based latent space 0.030 ± 0.019

suffer from this problem because it keeps explorative throwing
trajectories in the space spanned by the training throwing tra-
jectories. Just like in simulation, we obtained better performance
with learning in the AE-based latent space than in the PCA-based
latent space.

6.3. Evaluation of statistical learning in latent spaces

Reinforcement learning finds a suitable robot throwing tra-
jectory for the given target. It does not take into account any
previously acquired knowledge about throwing at different tar-
gets and always needs to start learning from scratch. We applied
statistical learning method GPR (Gaussian Process Regression,
see [39]) to exploit previous knowledge when throwing at new
targets. In this section, we compare the accuracy of GPR for
different skill representations.

6.3.1. Performance of GPR
In simulation we tested the performance of statistical general-

ization with Gaussian process regression (GPR) using data within
the black square in Fig. 3a for training and data within the red
dashed square for testing. The data at the edge of the training set
were not used for testing because the performance of statistical
learning deteriorates at the edge of the training area. We created
a testing set using a grid of 7 × 7 testing targets, which were
in-between the data points used for training (see Fig. 5). For each
trajectory representation, we used the corresponding dataset de-
fined in (12)–(14) to calculate GPR parameters (see [39]). GPR
was then used to compute and execute throwing trajectories for
each target in the testing set. We used dynamical simulation
to perform the throwing actions. Results are shown in Table 2,
where the average error and its variance for each representation
are shown. In Fig. 8, the throwing errors are presented with a
contour plot.

The results in Table 2 clearly show that GPR in the AE-based
latent space outperforms the statistical learning in the other two
parameter spaces. Not only the average error but also the variance
between the results is smaller in case of applying GPR in the AE-
based latent space. In Fig. 8 we can observe uniformly low errors
for GPR in the E-based latent space. To a degree, the errors are
still relatively low but larger in the PCA-based latent space. When
applying GPR in the full DMP parameter space, we can observe
noticeable differences between the areas of low and high errors.

6.3.2. Incremental dataset augmentation
We also tested how the performance of statistical learning

improves as the training dataset used to compute GPR parameters
becomes larger. This experiment was performed both in simu-
lation and on the real robot. In both experiments, the dataset
augmentation process followed the following procedure:

1. Compute GPR parameters using the initial training set
{θk, qk}

m
k=1.

2. Generate a random target position q within the selected
training area and compute the corresponding throwing
trajectory θm+1 using GPR in the appropriate parameter
space.

R. Pahič, Z. Lončarević, A. Gams et al. Robotics and Autonomous Systems 135 (2021) 103690

P
t

g

Fig. 6. Results of reinforcement learning on simulated data. (a) Average error distance after the specified number of trials for DMP representation, PCA-based and
AE-based latent space representation, with the 95% confidence interval for the exponential distribution of the results. (b) Average number of rollouts to the first hit
for reinforcement learning with different trajectory representation and the variance of the results.
Fig. 7. Reinforcement learning of throwing movements on a real robot. (a) Average error distance after the specified number of trials for DMP representation,
CA-based and AE-based latent space representation, with 95% confidence interval for the exponential distribution of the results. (b) Average number of rollouts to
he first hit for reinforcement learning with different trajectory representations and the variance of the results.
Fig. 8. Throwing error resulting from the throwing trajectories computed by GPR in different learning spaces. Circles represent different targets on a 7 × 7 target
rid. Errors are in centimeters and represent the distance between the desired target and the closest point on the ball trajectory.
i
t
3
s
a

3. Execute the throwing trajectory in dynamic simulation or
with a real robot.

4. Measure the actual ball landing position qm+1 and compute
the distance between the actual landing position and the
desired target position q.

5. Augment the training dataset {θk, qk}
m+1
k=1 and compute the

new GPR parameters.
6. Increase m and continue with Step 2.
 s

8

In simulation, we first performed four throws to generate the
nitial training set at four targets situated at the edge of the
esting area, which was the same black square area as in Fig.
a. The random targets were then generated in the red dashed
quare area. For each skill representation, we repeated the data
ugmentation procedure 20 times. Each time we augmented the
ame initial dataset with 50 randomly selected targets. As the

R. Pahič, Z. Lončarević, A. Gams et al. Robotics and Autonomous Systems 135 (2021) 103690

l
t
L
a
e
t
t
s

t
4
r
t
t
t
r
e

l
t
i
a
t

7

i
a
s
m
p
l
f
e
i
p
s
e
l
w
n

t

Fig. 9. Improved performance of statistical learning by autonomous dataset augmentation procedure. (a) Simulation experiment. (b) Real robot experiment. Both
graphs show the average error of throwing and 95% confidence interval for the exponential distribution of the results for different trajectory representations as a
function of the number of points added to the training set used to compute GPR.
datasets became larger, the error of throws decreased for all three
skill representations, as shown in Fig. 9a.

The simulation results shown in Fig. 9a demonstrate that
earning in the AE-based latent space was the fastest at reducing
he error of throwing and achieved the most stable convergence.
earning in the DMP parameter space and PCA-based latent space
lso converged but needed more data to achieve the same average
rror. The plot also shows that the process of database augmenta-
ion in the full DMP parameter space was less stable, probably due
o occasionally adding throwing trajectories with larger errors, as
hown in Fig. 8 left.
On the real robot, we performed a similar experiment for

argets distributed along the line at the distance from 2 m to
m. We first performed 2 throws resulted in the ball landing

oughly at the edge of the training area. 20 random targets were
hen generated within the training area and the dataset augmen-
ation procedure was performed. We repeated this procedure 3
imes, starting from the same initial dataset for each trajectory
epresentation. 20 additional throws were performed in each
xperiment.
The results of these experiments are shown in Fig. 9b. While

earning in the AE-based latent space again performed the best, in
hese experiments we achieved similar performance by learning
n the full DMP parameter space. This is probably the result of
small statistical sample and simplification of the experimental

ask to one dimension.

. Summary and discussion

In this paper we demonstrated the advantages of motor learn-
ng in low-dimensional latent spaces compared to learning in
full motor parameter space, e. g. DMP parameter space. We

howed that both reinforcement and statistical learning can be
ore effective in latent spaces. Even though the data for com-
uting latent spaces were generated in simulation, the computed
atent spaces were successfully used also to increase the per-
ormance of learning on the real robot. More specifically, our
xperiments show that the average error of statistical learning
n latent spaces is lower and requires fewer data points for good
erformance. Similarly, reinforcement learning in latent spaces is
ignificantly faster and more stable. In all our experiments, differ-
nt forms of learning in the AE-based latent space outperformed
earning in the PCA-based latent space. The achieved results align
ith the better approximation performance of deep autoencoder
eural networks compared to PCA.
One reason why learning in restricted latent spaces is faster

han learning in the full motor parameter space is that latent
9

spaces limit exploration to the part of the motor space that is
relevant for the desired task. However, this can be problematic
if the latent space does not approximate the task-relevant part
of the motor space well. This is the main reason why learning
in the AE-based latent space outperformed learning in the PCA-
based latent space. Namely, due to its ability to model nonlinear
relationships, AE-based latent space is normally a better approx-
imation of the task-relevant part of the motor space. A possible
approach to improve the approximation quality of latent spaces is
to generate additional data points by applying RL in the full motor
parameter space and then add these data points to the dataset
used for computing latent spaces.

When training an AE, the AE should not only learn to copy
training data perfectly from input to output, but also learn to
come as close as possible to the exact representation of training
data in the latent space. The approach that emphasizes this aspect
is the energy-based model for AE. The PCA already follows this
approach by default through the method definition [43]. We
believe that by implementing this approach for our AEs, e.g. by
making use of denoising AEs or regularization of latent space [44],
we can create even better AE latent spaces for motor learning.
This is part of our future research.

In our experiments, we augmented the database for statistical
learning by randomly generating additional query points (tar-
gets) and the associated throwing trajectories. However, this was
only possible because we could first analytically compute the
associated throwing trajectories using the method described in
Appendix B. New data points for learning were then generated
by executing the computed throwing trajectories in dynamical
simulation or on a real robot. If it is not possible to analytically
compute new training trajectories to acquire additional training
data, then reinforcement learning, possibly performed in latent
spaces, can be used to obtain new training data for statistical
learning. This way the training database can be augmented in a
fully model-free way.

Another venue for further research is to use imitation learning
to acquire the initial database for latent space computation and
subsequent learning. For example, human trajectories could be
recorded during the desired task execution and used to compute
latent spaces. Just like in our experiments, where latent spaces
were computed using simulated data and improved the learning
on a real robot, we expect that human-demonstrated task execu-
tions would provide similar benefits. However, since the variance
of human-demonstrated trajectories is typically much larger, it
might be necessary to use variational autoencoders to account
for these variances, as shown in the work of Chen et al. [20]. The
latent space of variational autoencoder could be used in the same
way as our current, AE-based latent space.

Max

R. Pahič, Z. Lončarević, A. Gams et al. Robotics and Autonomous Systems 135 (2021) 103690

D

c
t

A

t
s
s
n

A
t

v
l
a
r
t
u

θ

w
e
r
i
o
c
t

(
t

θ

w
w
t
p
c

θ

H
a
b
p
w
g

t
s
l
W
i
m
a

s
m
c

p

A

α

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgment

This work has received funding from program group Au-
omation, robotics, and biocybernetics (P2-0076) and young re-
earcher grant PR-07602, both supported by the Slovenian Re-
earch Agency, and from EU’s Horizon 2020 grant ReconCycle (GA
o. 871352).

ppendix A. Reward weighted policy learning with impor-
ance sampling

The reinforcement learning method PoWER was originally de-
eloped by Kober and Peters and is particularly well-suited for
earning of trial-based tasks in motor control [10]. Under certain
ssumptions, including the assumption that there is only terminal
eward and that only a single basis function is active at any given
ime (note that this is only approximately true for DMPs), PoWER
pdates control policy parameters θn as follows

n+1 = θn +
⟨(Θn − θn)R(Θn)⟩w(τ)

⟨R(Θn)⟩w(τ)
, (A.1)

here Θn = {θ∗

k}
n
k=1 denotes the set of all policy parameters θ∗

k
xecuted until the nth iteration and R > 0 the terminal reward
eceived at the end of each trial. The expression ⟨·⟩w(τ) denotes
mportance sampling, which role is to select a predefined number
f best trials to compute the update. The importance sampler
an significantly reduce the number of required trials (rollouts)
o compute the optimal control policy.

In the context of DMP parameter learning, the update rule
A.1) can be applied to estimate the weights of the DMP forcing
erm. It is equivalent to

n+1 =

∑m
i=1 Rin(n,i)θ

∗

in(n,i)∑m
i=1 Rin(n,i)

, (A.2)

here function in(n, i) selects the trial with the ith highest re-
ard from the trial set {θ∗

k, Rk}
n
k=1 and m is the number of best

rials used to compute the parameter update. The exploration
arameters are computed by adding exploration noise to the
urrent estimate θn

∗

n = θn + εn. (A.3)

ere εn is a zero mean Gaussian noise. Its variance Σ is usually
diagonal matrix specified by a user. Higher variance should
e used when it is necessary to explore a larger area in the
arameter space, but this could take a lot of time to converge,
hereas lower variance results in faster convergence but could
et stuck in a local minimum.
While a rigorous implementation of PoWER is applicable only

o reinforcement learning of weights of the DMP forcing term, its
implified version specified by the update rule (A.1) and equiva-
ently (A.2) can be applied also to learn other DMP parameters.
e call the resulting method reward weighted policy learn-

ng with importance sampling. In our experiments we used this
ethod to estimate the full DMP parameter set as well as the AE-
nd PCA-based latent space parameters.
10
Appendix B. Generation of simulated ball throwing trajecto-
ries

Neglecting the air drag, the motion of a free-flying ball can be
modeled as follows

p(t) =

[
prx + (t − tr)v0 cos(αr)

pry + (t − tr)v0 sin(αr) −
1
2 (t − tr)2g

]
, (B.1)

where tr denotes the time at which the robot releases the ball,
pr = [prx, p

r
y]

T the ball position at release time, ṗr = v0[cos(αr),
in(αr)]T the ball velocity at release time, and αr the angle of
otion at release time. g is the gravitational acceleration. Eq. (B.1)
an be re-written as a parabola in 2-D plane

y(t)− pry = tan(αr)(px(t)− prx)−
1
2

g
v20 cos2(αr)

(px(t)− prx)
2. (B.2)

ll values are given in the robot base coordinate system.
Formula (B.2) was used in [8] to compute the angle

r (pr , α) = arctan
(
2
h − pry
d − prx

− tan(α)
)

(B.3)

and absolute velocity

v0(pr , α) =

√
−

g(d − prx)2

2(tan(α)(d − prx) − (h − pry)) cos2(αr (pr , α))

(B.4)

of the robotic throwing movement at release time from the given
release position pr , the final target position q = [d, h]T, and angle
α at which the ball should hit the target. Parameters d and h
denote the distance and height of the target.

Unfortunately, the training data computed by hand-specifying
the angle α and the release position pr as in [8] turned out
to be too simple to properly evaluate our learning processes.
We therefore developed a 2-step procedure to generate a more
variable set of throwing movements. In the first step, we calculate
the robot joint configuration yr at release time where the smallest
joint velocity ẏr is needed to hit the target. Let Ffk denote the for-
ward kinematics relating the 3 robot degrees of freedom y used
for throwing in this experiment to the 2 Cartesian dimensions
describing the throwing target, pr = Ffk(yr). We formulate the
following optimization problem

argmin
yr ,α

{
∥W optẏr∥

2
=

W optJ+

r v0 (Ffk(yr), α)
[
cos(αr (Ffk(yr), α))
sin(αr (Ffk(yr), α))

]2
}
,

subject to (B.5)
− 90◦

≤ α ≤ −35◦, ymin
≤ yr ≤ ymax,

where J r ∈ R2×3 is the robot Jacobian at release configuration
yr . Functions αr and v0 are defined by Eq. (B.3) and (B.4), re-
spectively. The weight matrix W opt = diag(1/|ẏmax

1 |, 1/|ẏmax
2 |,

1/|ẏmax
3 |) was included to normalize the velocities with the max-

imum allowed joint velocities. To ensure that the thrown ball
lands successfully in the basket, we limited the hitting angle α
within a suitable range. The release velocities ẏr can also be
computed at the optimal configuration {yr , α} using forward
kinematics and formulas (B.3)–(B.4).

In the second step we use the computed release joint position
and velocity values to create the throwing trajectory y(t). We
use a fifth degree polynomial to represent the throwing motion.
The coefficients of the polynomial are computed by setting the
following values: ẏ(0) = ÿ(0) = 0, y(tr) = yr , ẏ(tr) = ẏr ,
ÿ(tr) = 0 and ẏ(tend) = 0. We obtain

y(t) =

(
yr −

tr (25 (tr/tend)
2
−

14
15 tr/tend +

1
2)

(t /t − 1)2
ẏr

)

r end

R. Pahič, Z. Lončarević, A. Gams et al. Robotics and Autonomous Systems 135 (2021) 103690

T

R

+
1 −

4
3 tr/tend

t2r (tr/tend − 1)2
ẏr t

3
+

2(tr/tend)2 − 1
2t3r (tr/tend − 1)2

ẏr t
4
+

2 − 3tr/tend
5tendt3r (tr/tend − 1)2

ẏr t
5. (B.6)

Note that tr (release time) and tend (the time when the robot stops
moving) still have not been determined. We compute them by
requiring that at the beginning of motion, the ball holder is in a
horizontal position, making sure that the ball does not fall from
the holder. This is the case in our experimental setup if the sum of
the three joint angles active in throwing, i. e.

∑3
i=1 yi, is equal to

135 degrees. We formulate the following optimization problem

arg min
tr , tend

{(
3π/4 −

∑3
i=1yi(0)

)2}
subject to (B.7)

0.3 ≤ tend, 0 < tr < tend, ymin
≤ y(0) ≤ ymax,

where

y(0) = yr − ẏr
tr (25 (tr/tend)

2
−

14
15 tr/tend +

1
2)

(tr/tend − 1)2
. (B.8)

he ball throwing trajectory is fully determined by solving (B.7).

eferences

[1] J. Peters, J. Kober, K. Muelling, O. Kroemer, G. Neumann, Towards robot
skill learning: From simple skills to table tennis, in: European Conference
on Machine Learning (ECML), 2013, pp. 627–631.

[2] T. Petrič, A. Gams, L. Colasanto, A.J. Ijspeert, A. Ude, Accelerated sensori-
motor learning of compliant movement primitives, IEEE Trans. Robot. 34
(6) (2018) 1636–1642.

[3] S. Thrun, T.M. Mitchell, Lifelong robot learning, Robot. Auton. Syst. 15 (1)
(1995) 25–46.

[4] S. Schaal, Is imitation learning the route to humanoid robots? Trends Cogn.
Sci. 3 (6) (1999) 233–242.

[5] R. Dillmann, Teaching and learning of robot tasks via observation of human
performance, Robot. Auton. Syst. 47 (2–3) (2004) 109–116.

[6] B. Nemec, R. Vuga, A. Ude, Efficient sensorimotor learning from multiple
demonstrations, Adv. Robot. 27 (13) (2013) 1023–1031.

[7] A. Alissandrakis, C.L. Nehaniv, K. Dautenhahn, Solving the correspondence
problem between dissimilarly embodied robotic arms using the ALICE
imitation mechanism, in: Second International Symposium on Imitation
in Animals & Artifacts (AISB), 2003, pp. 79–92.

[8] A. Ude, A. Gams, T. Asfour, J. Morimoto, Task-specific generalization of
discrete and periodic dynamic movement primitives, IEEE Trans. Robot.
26 (5) (2010) 800–815.

[9] J. Kober, D. Bagnell, J. Peters, Reinforcement learning in robotics: A survey,
Int. J. Robot. Res. 32 (11) (2013) 1238–1274.

[10] J. Kober, J. Peters, Policy search for motor primitives in robotics, Mach.
Learn. 84 (1–2) (2011) 171–203.

[11] M.P. Deisenroth, G. Neumann, J. Peters, A survey on policy search for
robotics, Found. Trends Robot. 2 (1–2) (2013) 388–403.

[12] A. Ijspeert, J. Nakanishi, P. Pastor, H. Hoffmann, S. Schaal, Dynamical
movement primitives: Learning attractor models for motor behaviors,
Neural Comput. 25 (2) (2013) 328–373.

[13] I. Jolliffe, J. Cadima, Principal component analysis: A review and recent
developments, Phil. Trans. R. Soc. A 374 (2016) 20150202.

[14] S. Vijayakumar, S. Schaal, Locally weighted projection regression: Incre-
mental real time learning in high dimensional space, in: Seventeenth
International Conference on Machine Learning (ICML), Morgan Kaufmann,
San Francisco, CA, 2000, pp. 1079–1086.

[15] G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with
neural networks, Science 313 (5786) (2006) 504–507.

[16] R. Pahič, A. Gams, A. Ude, J. Morimoto, Deep encoder-decoder networks
for mapping raw images to dynamic movement primitives, in: IEEE
International Conference on Robotics and Automation (ICRA), Brisbane,
Australia, 2018, pp. 5863–5868.

[17] K.S. Luck, G. Neumann, E. Berger, J. Peters, H.B. Amor, Latent space policy
search for robotics, in: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), Chicago, IL, 2014, pp. 1434–1440.

[18] H. van Hoof, N. Chen, M. Karl, P. van der Smagt, J. Peters, Stable reinforce-
ment learning with autoencoders for tactile and visual data, in: IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), Deajeon, Korea, 2016,
pp. 3928–3934.
11
[19] N. Chen, J. Bayer, S. Urban, P. van der Smagt, Efficient movement represen-
tation by embedding Dynamic Movement Primitives in deep autoencoders,
in: IEEE-RAS International Conference on Humanoid Robots (Humanoids),
Seoul, Korea, 2015, pp. 434–440.

[20] N. Chen, M. Karl, P. van der Smagt, Dynamic movement primitives in
latent space of time-dependent variational autoencoders, in: IEEE-RAS In-
ternational Conference on Humanoid Robots (Humanoids), Cancun, Mexico,
2016, pp. 629–636.

[21] D.M. Wolpert, J. Diedrichsen, J.R. Flanagan, Principles of sensorimotor
learning, Nat. Rev. Neurosci. 12 (12) (2011) 739–751.

[22] B. Nemec, D. Forte, R. Vuga, M. Tamošiūnaitė, F. Wörgötter, A. Ude,
Applying statistical generalization to determine search direction for re-
inforcement learning of movement primitives, in: IEEE-RAS International
Conference on Humanoid Robots (Humanoids), Osaka, Japan, 2012.

[23] A. Colomé, C. Torras, Dimensionality reduction and motion coordination in
learning trajectories with Dynamic Movement Primitives, in: IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), Chicago,
IL, 2014, pp. 1414–1420.

[24] D. Forte, A. Gams, J. Morimoto, A. Ude, On-line motion synthesis and
adaptation using a trajectory database, Robot. Auton. Syst. 60 (10) (2012)
1327–1339.

[25] T. Matsubara, S.-H. Hyon, J. Morimoto, Learning parametric dynamic
movement primitives from multiple demonstrations, Neural Netw. 24 (5)
(2011) 493–500.

[26] R. Pahič, B. Ridge, A. Gams, J. Morimoto, A. Ude, Training of deep neural
networks for the generation of dynamic movement primitives, Neural
Netw. 127 (2020) 121–131.

[27] M. Deniša, A. Gams, A. Ude, T. Petrič, Learning compliant movement
primitives through demonstration and statistical generalization, IEEE/ASME
Trans. Mechatronics 21 (5) (2016) 2581–2594.

[28] A. Kramberger, A. Gams, B. Nemec, D. Chrysostomou, O. Madsen, A. Ude,
Generalization of orientation trajectories and force-torque profiles for
robotic assembly, Robot. Auton. Syst. 98 (2017) 333–346.

[29] T. Gašpar, B. Nemec, J. Morimoto, A. Ude, Skill learning and action
recognition by arc-length dynamic movement primitives, Robot. Auton.
Syst. 100 (2018) 225–235.

[30] F. Stulp, G. Raiola, A. Hoarau, S. Ivaldi, O. Sigaud, Learning compact
parameterized skills with a single regression, in: IEEE-RAS International
Conference on Humanoid Robots (Humanoids), Atlanta, GA, 2013, pp.
417–422.

[31] R. Reinhart, J. Steil, Efficient policy search with a parameterized skill
memory, in: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Chicago, IL, 2014, pp. 1400–1407.

[32] K. Muelling, J. Kober, O. Kroemer, J. Peters, Learning to select and gener-
alize striking movements in robot table tennis, Int. J. Robot. Res. 32 (3)
(2013) 263–279.

[33] Y. Zhou, J. Gao, T. Asfour, Movement primitive learning and generalization:
Using mixture density networks, IEEE Robot. Autom. Mag. 27 (2) (2020)
2–12.

[34] S. Calinon, A tutorial on task-parameterized movement learning and
retrieval, Intell. Serv. Robot. 9 (1) (2015) 1–29.

[35] Y. Zuo, G. Avraham, T. Drummond, Traversing latent space using decision
ferns, 2018, arXiv:1812.02636.

[36] L. Le, A. Patterson, M. White, Supervised autoencoders: Improving gen-
eralization performance with unsupervised regularizers, in: Advances in
Neural Information Processing Systems 31, Curran Associates, 2018, pp.
107–117.

[37] Y. Yoo, S. Yun, H.J. Chang, Y. Demiris, J.Y. Choi, Variational autoencoded re-
gression: High dimensional regression of visual data on complex manifold,
in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, Hawaii, 2017, pp. 2943–2952.

[38] C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
[39] C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning

(Adaptive Computation and Machine Learning), The MIT Press, 2005.
[40] E. Todorov, T. Erez, Y. Tassa, MuJoCo: A physics engine for model-based

control, in: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Vilamoura, Portugal, 2012, pp. 5026–5033.

[41] B. Nemec, R. Vuga, A. Ude, Exploiting previous experience to constrain
robot sensorimotor learning, in: IEEE-RAS International Conference on
Humanoid Robots (Humanoids), Bled, Slovenia, 2011, pp. 727–732.

[42] R. Pahič, Throwing trajectories dataset, 2019, https://github.com/abr-ijs/
Throwing-trajectories-dataset.

[43] M. Ranzato, Y.-L. Boureau, S. Chopra, Y. LeCun, A unified energy-based
framework for unsupervised learning, in: M. Meila, X. Shen (Eds.), Artificial
Intelligence and Statistics, Proceedings of Machine Learning Research, San
Juan, Puerto Rico, 2007, pp. 371–379.

[44] H. Kamyshanska, R. Memisevic, The potential energy of an autoencoder,
IEEE Trans. Pattern Anal. Mach. Intell. 37 (6) (2015) 1261–1273.

http://refhub.elsevier.com/S0921-8890(20)30530-3/sb1
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb1
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb1
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb1
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb1
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb2
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb2
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb2
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb2
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb2
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb3
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb3
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb3
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb4
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb4
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb4
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb5
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb5
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb5
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb6
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb6
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb6
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb7
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb7
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb7
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb7
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb7
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb7
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb7
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb8
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb8
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb8
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb8
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb8
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb9
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb9
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb9
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb10
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb10
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb10
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb11
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb11
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb11
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb12
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb12
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb12
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb12
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb12
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb13
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb13
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb13
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb14
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb14
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb14
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb14
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb14
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb14
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb14
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb15
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb15
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb15
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb21
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb21
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb21
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb24
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb24
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb24
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb24
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb24
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb25
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb25
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb25
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb25
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb25
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb26
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb26
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb26
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb26
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb26
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb27
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb27
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb27
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb27
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb27
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb28
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb28
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb28
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb28
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb28
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb29
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb29
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb29
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb29
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb29
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb32
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb32
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb32
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb32
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb32
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb33
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb33
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb33
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb33
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb33
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb34
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb34
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb34
http://arxiv.org/abs/1812.02636
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb36
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb36
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb36
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb36
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb36
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb36
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb36
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb38
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb39
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb39
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb39
https://github.com/abr-ijs/Throwing-trajectories-dataset
https://github.com/abr-ijs/Throwing-trajectories-dataset
https://github.com/abr-ijs/Throwing-trajectories-dataset
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb44
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb44
http://refhub.elsevier.com/S0921-8890(20)30530-3/sb44

R. Pahič, Z. Lončarević, A. Gams et al. Robotics and Autonomous Systems 135 (2021) 103690

r

Rok Pahič received the M.Sc. degree in mechanical
engineering from the University of Maribor, Slovenia.
As of 2016 he started his Ph.D. study at Jožef Stefan
International Postgraduate School and works at the De-
partment of Automatics, Biocybernetics and Robotics,
Jožef Stefan Institute, Ljubljana, Slovenia. His research
work focuses mainly on deep learning in robotics.

Zvezdan Lončarević received B.Sc. degree in Mecha-
tronics from the Faculty of Technical Science, University
of Novi Sad, Serbia in 2017 and M.Sc degree in
Information and Communication Technologies from
Jožef Stefan International Postgraduate School, Ljubl-
jana, Slovenia in 2019. As of 2019 he started his Ph.D.
study at Jožef Stefan International Postgraduate School
and works at the Department of Automatics, Biocy-
bernetics and Robotics, Jožef Stefan Institute, Ljubljana,
Slovenia. His research work focuses mainly on gener-
ation of robotic trajectories through optimization and

einforcement learning.
12
Andrej Gams is currently a senior research associate
at Dept. of Automatics, Biocybernetics, and Robotics
at Jožef Stefan Institute, and an assistant professor at
the Jožef Stefan International Postgraduate School. He
received his diploma degree and his Ph.D. in robotics
from the University of Ljubljana, Slovenia. He was a
postdoctoral researcher with SCIEX NMS-CH fellowship
at the Biorobotics Laboratory, EPFL, Switzerland, and
a visiting researcher at the ATR Computational Neu-
roscience Laboratories in Japan. His research interests
are at the intersection of humanoid and applicative

industrial robotics, specifically learning by imitation, learning for manipulation,
compliance and adaptation of robotic motion.

Aleš Ude received the Diploma degree in applied
mathematics from the University of Ljubljana, Slovenia,
in 1990, and the Ph.D. degree from the Faculty of
Informatics, University of Karlsruhe, Germany, in 1995.
Currently he is a research councillor at Jožef Stefan
Institute in Ljubljana, Slovenia, where he heads the De-
partment of Automatics, Biocybernetics, and Robotics.
He is also a visiting researcher at ATR Computational
Neuroscience Laboratories, Kyoto, Japan. His research
interests include robot learning, humanoid robotics and
reconfigurable robot systems.

	Robot skill learning in latent space of a deep autoencoder neural network
	Introduction
	Main contributions

	Related work
	DMP latent space representations
	DMP parameter space
	Autoencoder-based latent space
	PCA-based latent space

	Learning in AE- and PCA-based latent spaces
	Reinforcement learning in latent spaces
	Gaussian processes regression in latent spaces

	Experimental setup
	Generating AE and PCA-based latent spaces
	Dataset for statistical learning

	Experimental results
	Reproduction error of AE- and PCA-based latent spaces
	Reinforcement learning experiments
	Dynamic simulation
	Real robot experiments

	Evaluation of statistical learning in latent spaces
	Performance of GPR
	Incremental dataset augmentation

	Summary and discussion
	Declaration of competing interest
	Acknowledgment
	Appendix A. Reward weighted policy learning with importance sampling
	Appendix B. Generation of simulated ball throwing trajectories
	References

